Absence of thyroid hormone receptor β–retinoid X receptor interactions in auditory function and in the pituitary–thyroid axis

Neuroreport ◽  
1998 ◽  
Vol 9 (13) ◽  
pp. 2933-2937 ◽  
Author(s):  
Angel Campos Barros ◽  
Lawrence C. Erway ◽  
Wojciech Krezel ◽  
Tom Curran ◽  
Philippe Kastner ◽  
...  
1997 ◽  
Vol 272 (20) ◽  
pp. 13060-13065 ◽  
Author(s):  
Trevor N. Collingwood ◽  
Alison Butler ◽  
Yukiko Tone ◽  
Rory J. Clifton-Bligh ◽  
Malcolm G. Parker ◽  
...  

1996 ◽  
Vol 318 (1) ◽  
pp. 263-270 ◽  
Author(s):  
René W. L. M. NIESSEN ◽  
Farhad REZAEE ◽  
Pieter H. REITSMA ◽  
Marjolein PETERS ◽  
Jan J. M. de VIJLDER ◽  
...  

We studied potential modulators of antithrombin gene expression. A putative hormone response element (HRE) was identified by sequence similarity analysis of the antithrombin promoter, situated between nucleotides -92 and -54 relative to the transcription start site. This HRE contains three hexanucleotide motifs with an AGGTCA consensus, which are potential targets of members of the steroid/thyroid superfamily of nuclear receptors. Stimulation of the hepatoma cell line HepG2 with the receptor ligands l-3,5,3´-tri-iodothyronine, all-trans retinoic acid, or their combination, increased production of antithrombin into the culture medium by 1.3-, 1.6-, and 2.0-fold, respectively. In contrast, the receptor ligand 1,25-dihydroxycholecalciferol [1,25-(OH)2VitD3] did not influence antithrombin production. Analysis of promoter chloramphenicol acetyltransferase (CAT) constructs, showed that the first 86 bp of the antithrombin promoter region are sufficient for basal transcription. The DNA length polymorphism of 32 bp or 108 bp, located upstream of position -276, did not influence antithrombin promoter activity. The antithrombin promoter activity dropped to background values when deleting the region -97/-49 of promoter fragment -453/+57. Transactivation of the antithrombin promoter by retinoid X receptor α (RXRα) (5–7-fold) or thyroid hormone receptor β (TRβ) (4–5-fold) was only observed when at least -167/+57 bp of the promoter region is present in CAT constructs, and when the appropriate ligand of the nuclear receptor was added. This transactivation was not observed upon deletion of the antithrombin promoter region -97/-49. With three copies of the antithrombin promoter fragment -109/-42 in front of the thymidine kinase minimal promoter, transactivation was only obtained with RXRα, and not with TRβ. In conclusion, these results indicate that the ligand-dependent enhancement of antithrombin gene expression is regulated by RXRα as well as by TRβ. Transactivation of antithrombin gene expression by RXRα and TRβ appears to be dependent upon the presence of promoter region up to nucleotide -167. The HRE segment (-109/-42) only confers RXRα responsiveness to a heterologous promoter. Further study is needed to unravel the exact nature of this HRE and its 5´-flanking sequences.


1996 ◽  
Vol 13 (3) ◽  
pp. 354-357 ◽  
Author(s):  
Douglas Forrest ◽  
Lawrence C. Erway ◽  
Lily Ng ◽  
Richard Altschuler ◽  
Tom Curran

Endocrinology ◽  
2006 ◽  
Vol 147 (9) ◽  
pp. 4292-4302 ◽  
Author(s):  
Koshi Hashimoto ◽  
Masanobu Yamada ◽  
Shunichi Matsumoto ◽  
Tsuyoshi Monden ◽  
Teturou Satoh ◽  
...  

Sterol regulatory element-binding protein (SREBP)-1c is a key regulator of fatty acid metabolism and plays a pivotal role in the transcriptional regulation of different lipogenic genes mediating lipid synthesis. In previous studies, the regulation of SREBP-1c mRNA levels by thyroid hormone has remained controversial. In this study, we examined whether T3 regulates the mouse SREBP-1c mRNA expression. We found that T3 negatively regulates the mouse SREBP-1c gene expression in the liver, as shown by ribonuclease protection assays and real-time quantitative RT-PCR. Promoter analysis with luciferase assays using HepG2 and Hepa1–6 cells revealed that T3 negatively regulates the mouse SREBP-1c gene promoter (−574 to +42) and that Site2 (GCCTGACAGGTGAAATCGGC) located around the transcriptional start site is responsible for the negative regulation by T3. Gel shift assays showed that retinoid X receptor-α/thyroid hormone receptor-β heterodimer bound to Site2, but retinoid X receptor-α/liver X receptor-α heterodimer could not bind to the site. In vivo chromatin immunoprecipitation assays demonstrated that T3 induced thyroid hormone receptor-β recruitment to Site2. Thus, we demonstrated that mouse SREBP-1c mRNA is down-regulated by T3in vivo and that T3 negatively regulates mouse SREBP-1c gene transcription via a novel negative thyroid hormone response element: Site2.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2241-2250 ◽  
Author(s):  
Teresa Otto ◽  
Joachim Fandrey

Thyroid hormones are important regulators of differentiation, growth, metabolism, and physiological function of virtually all tissues. Active thyroid hormone T3 affects expression of genes that encode for angiogenic proteins like adrenomedullin or vascular endothelial growth factor and erythropoietin, as well as for glucose transporters and phospho fructokinase that determine glucose use. Interestingly, those target genes are also hypoxia inducible and under the control of the oxygen-dependent transcription factor hypoxia-inducible factor (HIF)-1). We and others have reported that T3 stimulates HIF-1 activation, which intimately links T3 and HIF-1 induced gene expression. Here, we studied intracellular pathways that mediate HIF-1α regulation by T3. We found that T3-dependent HIF-1 activation is not limited to hepatoma cells but is also observed in primary human hepatocytes, kidney and lung carcinoma cells. T3 increased the HIF-1α subunit mRNA and protein within a few hours through activation of the thyroid hormone receptor β retinoid X receptor α heterodimer because knockdown of each of the partners abrogated the stimulation by T3. However, T3 had no direct effect on transcription of HIF-1α, but activation of the thyroid hormone receptor β/retinoid X receptor α heterodimer by T3 stimulated expression of the hepatic leukemia factor, which increases HIF-1α gene expression.


2005 ◽  
Vol 25 (17) ◽  
pp. 7687-7695 ◽  
Author(s):  
Hao Ying ◽  
Fumihiko Furuya ◽  
Mark C. Willingham ◽  
Jianming Xu ◽  
Bert W. O'Malley ◽  
...  

ABSTRACT Mutations of the thyroid hormone receptor β (TRβ) gene cause resistance to thyroid hormone (RTH). RTH is characterized by increased serum thyroid hormone associated with nonsuppressible thyroid-stimulating hormone (TSH) and impaired growth. It is unclear how the actions of TRβ mutants are modulated in vivo to affect the manifestation of RTH. Using a mouse model of RTH that harbors a knockin mutation of the TRβ gene (TRβPV mouse), we investigated the effect of the steroid hormone receptor coactivator 3 (SRC-3) on RTH. In TRβPV mice deficient in SRC-3, dysfunction of the pituitary-thyroid axis and hypercholesterolemia was lessened, but growth impairment of RTH was worsened. The lessened dysfunction of the pituitary-thyroid axis was attributed to a significant decrease in growth of the thyroid and pituitary. Serum insulin-like growth factor 1 (IGF-1) was further reduced in TRβPV mice deficient in SRC-3. This effect led to reduced signaling of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway that is known to mediate cell growth and proliferation. Thus, SRC-3 modulates RTH by at least two mechanisms, one via its role as a receptor coregulator and the other via its growth regulatory role through the IGF-1/PI3K/AKT/mTOR signaling.


Sign in / Sign up

Export Citation Format

Share Document