scholarly journals Cerebral Blood Flow during Hypoxemia and Hemodilution in Rabbits: Different Roles for Nitric Oxide?

1997 ◽  
Vol 17 (12) ◽  
pp. 1319-1325 ◽  
Author(s):  
Michael M. Todd ◽  
Stella Farrell ◽  
Bo Wu

Hypoxemia and anemia are associated with increased CBF, but the mechanisms that link the changes in Pao2 or arterial O2 content (Cao2) with CBF are unclear. These experiments were intended to examine the contribution of nitric oxide. Cao2 in pentobarbital-anesthetized rabbits was reduced to approximately 6.5 mL O2/dL by hypoxemia (Pao2 approximately 24 to 26 mm Hg) or hemodilution with hetastarch (hematocrit approximately 14% to 15%). Animals with normal Cao2 (approximately 17.5 to 18 mL O2/dL) served as controls. In part I, each animal was given 3, 10, and 30 mg/kg Nω-nitro-l-arginine methyl ester (l-NAME) intravenously (total 43 mg/kg) to inhibit production of nitric oxide. Forebrain CBF was measured with radioactive microspheres approximately 15 to 20 minutes after each dose. Baseline CBF was greater in hypoxemic rabbits (111 ± 31 mL·100 g−1·min−1, mean ± SD) than in hemodiluted (70 ± 22 mL·100 g−1·min−1) or control animals (39 ± 12 mL·100 g−1·min−1). l-NAME (which reduced brain tissue nitric oxide synthase activity by approximately 65%) reduced CBF in hypoxemic animals to 80 ± 23 mL·100 g−1·min−1 ( P < 0.0001), but had no significant effect on CBF in either anemic or control animals. In four additional rabbits, further hemodilution to a Cao2 of approximately 3.5 mL O2/dL increased baseline CBF to 126 ± 21 mL·100 g−1·min−1, but again there was no effect of l-NAME. In part II, animals were anesthetized as above, and a closed cranial window was prepared. The cyclic GMP (cGMP) content of the artificial CSF superfusate was measured under baseline conditions, and then after the reduction of Cao2 to approximately 6.5 mL O2/dL by either hypoxemia or hemodilution. Concentrations of cGMP did not change during either control conditions or after hemodilution. However, cGMP increased significantly with the induction of hypoxemia. The cGMP increase in hypoxemic animals could be blocked with l-NAME. These results suggest that nitric oxide plays some role in hypoxemic vasodilation, but not during hemodilution.

2003 ◽  
Vol 111 (5) ◽  
pp. 759-759
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2834-2843
Author(s):  
Daniel J. Beard ◽  
Zhaojin Li ◽  
Anna M. Schneider ◽  
Yvonne Couch ◽  
Marilyn J. Cipolla ◽  
...  

Background and Purpose: Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. Methods: Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. Results: In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm 3 , P <0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. Conclusions: Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.


1997 ◽  
Vol 87 (Supplement) ◽  
pp. 255A
Author(s):  
Douglas DeWitt ◽  
Larry W. Jenkins ◽  
Chris W. Tidwell ◽  
Donald S. Prough

1992 ◽  
Vol 77 (Supplement) ◽  
pp. A689 ◽  
Author(s):  
D S DeWitt ◽  
D S Prough ◽  
D M Colonna ◽  
D D Deal ◽  
S M Vines

Sign in / Sign up

Export Citation Format

Share Document