scholarly journals Loss of D2 Receptor Binding with Age in Rhesus Monkeys: Importance of Correction for Differences in Striatal Size

1999 ◽  
Vol 19 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Evan D. Morris ◽  
Svetlana I. Chefer ◽  
Mark A. Lane ◽  
Raymond F. Muzic ◽  
Dean F. Wong ◽  
...  

The relation between striatal dopamine D2 receptor binding and aging was investigated in rhesus monkeys with PET. Monkeys (n = 18, 39 to 360 months of age) were scanned with 11C-raclopride; binding potential in the striatum was estimated graphically. Because our magnetic resonance imaging analysis revealed a concomitant relation between size of striatum and age, the dynamic positron emission tomography (PET) data were corrected for possible partial volume (PV) artifacts before parameter estimation. The age-related decline in binding potential was 1% per year and was smaller than the apparent effect if the age-related change in size was ignored. This is the first in vivo demonstration of a decline in dopamine receptor binding in nonhuman primates. The rate of decline in binding potential is consistent with in vitro findings in monkeys but smaller than what has been measured previously in humans using PET. Previous PET studies in humans, however, have not corrected for PV error, although a decline in striatal size with age has been demonstrated. The results of this study suggest that PV correction must be applied to PET data to accurately detect small changes in receptor binding that may occur in parallel with structural changes in the brain.

2005 ◽  
Vol 14 (9) ◽  
pp. 655-663 ◽  
Author(s):  
Motoki Inaji ◽  
Takahito Yoshizaki ◽  
Takashi Okauchi ◽  
Jun Maeda ◽  
Yuji Nagai ◽  
...  

Positron emission tomography (PET) is a useful tool to assess and visualize neurotransmissions in vivo. In this study, we performed repeated PET scans with [11C]PE2I, a tracer of the dopamine transporter, to evaluate the alteration of the expression of dopamine (DA) transmission component after a fetal mesencephalic transplantation. The fetal mesencephalic cells were transplanted into the striatum of unilateral 6-OHDA-lesioned rats. PET scans with [11C]PE2I were performed to evaluate the DA transporter before and 2 and 4 weeks after the transplantation. Rotation behavior tests, in vitro autoradiography, measurements of DA contents in the striatum by high-performance liquid chromatography (HPLC), and tyrosine hydroxylase (TH) immuno-histological examinations were performed at the same time points and examined for their relationship to changes in the dopamine transporter. The number of ipsilateral rotations induced by methamphetamine injections decreased. DA contents in the striatum measured with HPLC significantly increased. In the PET study, the binding potential of [11C]PE2I increased at 4 weeks. The results of the in vitro autoradiography study corresponded with those of the PET study. The degrees of the change in the binding potentials correlated with those of the numbers of rotations in the behavioral study and the DA contents in the striatum. In the histological examination, TH-positive cells with axons were observed at 2 and 4 weeks after the transplantation. As the dopamine transporter exists only in the axon terminal of DA neurons, these results suggested that PET measurements of [11C]PE2I binding indicated not only survival, but maturity and functioning of the transplanted cells. Repeated PET measurements of DA transporters are a useful tool in assessing the effectiveness of neural transplantations.


Life Sciences ◽  
1988 ◽  
Vol 43 (14) ◽  
pp. 1151-1160 ◽  
Author(s):  
Robert D. McQuade ◽  
Richard Chipkin ◽  
Nordine Amlaiky ◽  
Marc Caron ◽  
Louis Iorio ◽  
...  

1995 ◽  
Vol 15 (5) ◽  
pp. 787-797 ◽  
Author(s):  
B. Sadzot ◽  
C. Lemaire ◽  
P. Maquet ◽  
E. Salmon ◽  
A. Plenevaux ◽  
...  

Changes in serotonin-2 receptors have been demonstrated in brain autopsy material from patients with various neurodegenerative and affective disorders. It would be desirable to locate a ligand for the study of these receptors in vivo with positron emission tomography (PET). Altanserin is a 4-benzoylpiperidine derivative with a high affinity and selectivity for S2 receptors in vitro. Dynamic PET studies were carried out in nine normal volunteers with high-specific activity (376–1,680 mCi/μmol) [18F]altanserin. Arterial blood samples were obtained and the plasma time–activity curves were corrected for the presence of labeled metabolites. Thirty minutes after injection, selective retention of the radioligand was observed in cortical areas, while the cerebellum, caudate, and thalamus had low radioactivity levels. Specific binding reached a plateau between 30 and 65 min postinjection at 1.8% of the injected dose/L of brain and then decreased, indicating the reversibility of the binding. The total/nonspecific binding ratio reached 2.6 for times between 50 and 70 min postinjection. The graphical analysis proposed by Logan et al. allowed us to estimate the binding potential ( Bmax/ KD). Pretreatment with ketanserin was given to three volunteers and brain activity remained uniformly low. An additional study in one volunteer showed that [18F]altanserin can be displaced from the receptors by large doses of ketanserin. At the end of the study, unchanged altanserin was 57% of the total plasma activity. These results suggest that [18F]altanserin is selective for S2 receptors in vivo as it is in vitro. They indicate that [18F]altanserin is suitable for imaging and quantifying S2 receptors with PET in humans.


2014 ◽  
Vol 34 (6) ◽  
pp. 989-994 ◽  
Author(s):  
David R Owen ◽  
Qi Guo ◽  
Nicola J Kalk ◽  
Alessandro Colasanti ◽  
Dimitra Kalogiannopoulou ◽  
...  

Positron emission tomography (PET) targeting the 18 kDa translocator protein (TSPO) is used to quantify neuroinflammation. Translocator protein is expressed throughout the brain, and therefore a classical reference region approach cannot be used to estimate binding potential ( BP ND). Here, we used blockade of the TSPO radioligand [11C]PBR28 with the TSPO ligand XBD173, to determine the non-displaceable volume of distribution ( V ND), and hence estimate the BP ND. A total of 26 healthy volunteers, 16 high-affinity binders (HABs) and 10 mixed affinity binders (MABs) underwent a [11C]PBR28 PET scan with arterial sampling. Six of the HABs received oral XBD173 (10 to 90 mg), 2 hours before a repeat scan. In XBD173-dosed subjects, V ND was estimated via the occupancy plot. Values of BP ND for all subjects were calculated using this V ND estimate. Total volume of distribution ( V T) of MABs (2.94 ± 0.31) was lower than V T of HABs (4.33 ± 0.29) ( P<0.005). There was dose-dependent occupancy of TSPO by XBD173 (ED50 = 0.34 ± 0.13 mg/kg). The occupancy plot provided a V ND estimate of 1.98 (1.69, 2.26). Based on these V ND estimates, BP ND for HABs is approximately twice that of MABs, consistent with predictions from in vitro data. Our estimates of [11C]PBR28 V ND and hence BP ND in the healthy human brain are consistent with in vitro predictions. XBD173 blockade provides a practical means of estimating V ND for TSPO targeting radioligands.


Sign in / Sign up

Export Citation Format

Share Document