Temporal inhomogeneity in brachial artery blood flow during forearm exercise

1997 ◽  
Vol 29 (8) ◽  
pp. 1021-1027 ◽  
Author(s):  
ROBERT A. ROBERGS ◽  
MILTON V. ICENOGLE ◽  
TRACEE L. HUDSON ◽  
ERNEST R. GREENE
1996 ◽  
Vol 81 (4) ◽  
pp. 1516-1521 ◽  
Author(s):  
J. K. Shoemaker ◽  
H. L. Naylor ◽  
Z. I. Pozeg ◽  
R. L. Hughson

Shoemaker, J. K., H. L. Naylor, Z. I. Pozeg, and R. L. Hughson. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans. J. Appl. Physiol. 81(4): 1516–1521, 1996.—The time course and magnitude of increases in brachial artery mean blood velocity (MBV; pulsed Doppler), diameter ( D; echo Doppler), mean perfusion pressure (MPP; Finapres), shear rate (γ˙ = 8 ⋅ MBV/ D), and forearm blood flow (FBF = MBV ⋅ π r 2) were assessed to investigate the effect that prostaglandins (PGs) have on the hyperemic response on going from rest to rhythmic exercise in humans. While supine, eight healthy men performed 5 min of dynamic handgrip exercise by alternately raising and lowering a 4.4-kg weight (∼10% maximal voluntary contraction) with a work-to-rest cycle of 1:1 (s/s). When the exercise was performed with the arm positioned below the heart, the rate of increase in MBV and γ˙ was faster compared with the same exercise performed above the heart. Ibuprofen (Ibu; 1,200 mg/day, to reduce PG-induced vasodilation) and placebo were administered orally for 2 days before two separate testing sessions in a double-blind manner. Resting heart rate was reduced in Ibu (52 ± 3 beats/min) compared with placebo (57 ± 3 beats/min) ( P < 0.05) without change to MPP. With placebo, D increased in both arm positions from ∼4.3 mm at rest to ∼4.5 mm at 5 min of exercise ( P < 0.05). This response was not altered with Ibu ( P > 0.05). Ibu did not alter the time course of MBV or forearm blood flow ( P > 0.05) in either arm position. The γ˙ was significantly greater in Ibu vs. placebo at 30 and 40 s of above the heart exercise and for all time points after 25 s of below the heart exercise ( P < 0.05). Because PG inhibition altered the time course ofγ˙ at the brachial artery, but not FBF, it was concluded that PGs are not essential in regulating the blood flow responses to dynamic exercise in humans.


2005 ◽  
Vol 98 (6) ◽  
pp. 2311-2315 ◽  
Author(s):  
Louise H. Naylor ◽  
Cara J. Weisbrod ◽  
Gerry O'Driscoll ◽  
Daniel J. Green

The purpose of this study was to establish valid indexes of conduit and resistance vessel structure in humans by using edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, to calculate conduit artery blood flow and diameter continuously across the cardiac cycle. Nine subjects aged 36.7 (9.2) yr underwent, on separate days, assessment of brachial artery blood flow and diameter response to 5-, 10-, and 15-min periods of forearm ischemia in the presence and absence of combined sublingual glyceryl trinitrate (GTN) administration. Two further sessions examined responses to ischemic exercise, one in combination with GTN. The peak brachial artery diameter was observed in response to the combination of ischemic exercise and GTN; a significant difference existed between resting brachial artery diameter and peak brachial artery diameter, indicating that resting diameter may be a poor measure of conduit vessel structure in vivo. Peak brachial artery flow was also observed in response to a combination of forearm ischemia exercise and GTN administration, the response being greater than that induced by periods of ischemia, GTN, or ischemic exercise alone. These data indicate that noninvasive indexes of conduit and resistance vessel structure can be simultaneously determined in vivo in response to a single, brief, stimulus and that caution should be applied in using resting arterial diameter as a surrogate measure of conduit artery structure in vivo.


2011 ◽  
Vol 40 (5) ◽  
pp. 206-210 ◽  
Author(s):  
Tomonari Ogawa ◽  
Osamu Matsumura ◽  
Akihiko Matsuda ◽  
Hajime Hasegawa ◽  
Tetsuya Mitarai

Sign in / Sign up

Export Citation Format

Share Document