Vascular Endothelial Growth Factor and Glioma Angiogenesis: Coordinate Induction of VEGF Receptors, Distribution of VEGF Protein and Possible In Vivo Regulatory Mechanisms

Retina ◽  
1995 ◽  
Vol 15 (2) ◽  
pp. 175 ◽  
Author(s):  
K H Plate ◽  
G Breier ◽  
H A Weich ◽  
H D Mennel ◽  
W Risau
Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3181-3187 ◽  
Author(s):  
Haijuan Chen ◽  
Andy T. Treweeke ◽  
Dave C. West ◽  
Kathleen J. Till ◽  
John C. Cawley ◽  
...  

Expansion of primary solid tumors and their malignant dissemination are angiogenesis-dependent. Vascular endothelial growth factor (VEGF) is the key factor playing a pivotal role in solid tumor-induced angiogenesis. Recent studies indicate that angiogenesis may also be involved in the pathogenesis of certain hemic malignancies, including B-cell chronic lymphocytic leukemia (B-CLL). Mechanisms underlying angiogenesis in B-CLL and the role of VEGF in this process are incompletely understood. In this study, it was examined whether angiogenically functional VEGF is produced by B-CLL cells. Immunohistochemical staining with antibodies against VEGF and CD34, an endothelial cell marker, demonstrated the presence of VEGF protein and abundant blood vessels in infiltrated lymphoreticular tissues. Low levels of VEGF were detected by ELISA in the culture media of unstimulated cells; this was enhanced up to 7-fold by hypoxic stimulation. SDS-PAGE and Western blot analysis of the concentrated culture media showed 2 isoforms of VEGF protein with molecular weights of 28 and 42 kd, respectively. RNA hybridization showed that these cells expressed VEGF mRNA. Reverse transcription–polymerase chain reaction, combined with nucleotide sequence analysis, revealed that the predominantly expressed isoforms were VEGF121 and VEGF165. Moreover, 3H-thymidine incorporation and an in vivo angiogenic assay demonstrated that the VEGF produced by CLL cells can induce angiogenesis by stimulating endothelial cell proliferation. In conclusion, this study shows that B-CLL cells produce VEGF and demonstrates the angiogenic effects of this growth factor, which may be relevant for the tissue phase of the disease.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3181-3187 ◽  
Author(s):  
Haijuan Chen ◽  
Andy T. Treweeke ◽  
Dave C. West ◽  
Kathleen J. Till ◽  
John C. Cawley ◽  
...  

Abstract Expansion of primary solid tumors and their malignant dissemination are angiogenesis-dependent. Vascular endothelial growth factor (VEGF) is the key factor playing a pivotal role in solid tumor-induced angiogenesis. Recent studies indicate that angiogenesis may also be involved in the pathogenesis of certain hemic malignancies, including B-cell chronic lymphocytic leukemia (B-CLL). Mechanisms underlying angiogenesis in B-CLL and the role of VEGF in this process are incompletely understood. In this study, it was examined whether angiogenically functional VEGF is produced by B-CLL cells. Immunohistochemical staining with antibodies against VEGF and CD34, an endothelial cell marker, demonstrated the presence of VEGF protein and abundant blood vessels in infiltrated lymphoreticular tissues. Low levels of VEGF were detected by ELISA in the culture media of unstimulated cells; this was enhanced up to 7-fold by hypoxic stimulation. SDS-PAGE and Western blot analysis of the concentrated culture media showed 2 isoforms of VEGF protein with molecular weights of 28 and 42 kd, respectively. RNA hybridization showed that these cells expressed VEGF mRNA. Reverse transcription–polymerase chain reaction, combined with nucleotide sequence analysis, revealed that the predominantly expressed isoforms were VEGF121 and VEGF165. Moreover, 3H-thymidine incorporation and an in vivo angiogenic assay demonstrated that the VEGF produced by CLL cells can induce angiogenesis by stimulating endothelial cell proliferation. In conclusion, this study shows that B-CLL cells produce VEGF and demonstrates the angiogenic effects of this growth factor, which may be relevant for the tissue phase of the disease.


2017 ◽  
Vol 68 (4) ◽  
pp. 326-329
Author(s):  
Piotr Barć ◽  
Tomasz Płonek ◽  
Dagmara Baczyńska ◽  
Artur Pupka ◽  
Wojciech Witkiewicz ◽  
...  

2002 ◽  
Vol 115 (12) ◽  
pp. 2559-2567 ◽  
Author(s):  
Teresa Odorisio ◽  
Cataldo Schietroma ◽  
M. Letizia Zaccaria ◽  
Francesca Cianfarani ◽  
Cecilia Tiveron ◽  
...  

Placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family, comprising at least five cytokines specifically involved in the regulation of vascular and/or lymphatic endothelium differentiation. Several lines of evidence indicate a role for PlGF in monocyte chemotaxis and in potentiating the activity of VEGF, but the exact function of this cytokine is not fully understood. To define the biological role of PlGF in vivo, we have produced a transgenic mouse model overexpressing this factor in the skin by using a keratin 14 promoter cassette. Our data indicate that PlGF has strong angiogenic properties in both fetal and adult life. PlGF overexpression results in a substantial increase in the number,branching and size of dermal blood vessels as well as in enhanced vascular permeability. Indeed, intradermally injected recombinant PlGF was able to induce vessel permeability in wild-type mice. The analysis of vascular endothelial growth factor receptor 1/flt-1 and vascular endothelial growth factor receptor 2/flk-1 indicates that the two receptors are induced in the skin endothelium of transgenic mice suggesting that both are involved in mediating the effect of overexpressed PlGF.


Sign in / Sign up

Export Citation Format

Share Document