HUMAN MEMORY T CELL ACTIVATION EFFECTS OF MONOCLONAL ANTIBODIES DIRECTED AT INTERLEUKIN-2, RECEPTORS FOR INTERLEUKIN-2, OR INTERFERON-γ

1988 ◽  
Vol 46 (2) ◽  
pp. 292-297 ◽  
Author(s):  
MANIKKAM SUTHANTHIRAN ◽  
KURT H. STENZEL
Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3806-3816 ◽  
Author(s):  
Joachim L. Schultze ◽  
Mark J. Seamon ◽  
Sabine Michalak ◽  
John G. Gribben ◽  
Lee M. Nadler

Abstract Follicular lymphomas (FLs) rarely induce clinically significant T-cell–mediated responses. We showed that freshly isolated tumor infiltrating T cells (T-TILs) lack tumor-specific cytotoxicity. Stimulation of these T cells with FL cells in the presence of interleukin-2 (IL-2) and/or costimulation via CD28 does not lead to T-cell activation and expansion. In contrast, when stimulated with FL cells preactivated via CD40, autologous T-TILs can be expanded by the addition of exogenous IL-2. These T cells can be further expanded in vitro by the addition of exogenous IL-4, IL-7, or interferon-γ, but not IL-12. Once activated, these T cells showed FL-directed cytotoxicity in four of five patients tested. We concluded that autologous cytotoxic anti-FL–specific T cells exist, but can only be detected in vitro under optimized conditions for T-cell stimulation and expansion. This suggests that their frequency in vivo is either very low or that the microenvironment does not provide the necessary signals to activate these T cells. This model system allows dissection of the requisite conditions for activation and expansion of lymphoma-directed cytotoxicity and may permit expansion of previously activated cytotoxic T cells for adoptive transfer.


2006 ◽  
Vol 203 (4) ◽  
pp. 883-895 ◽  
Author(s):  
Mary E. Keir ◽  
Spencer C. Liang ◽  
Indira Guleria ◽  
Yvette E. Latchman ◽  
Andi Qipo ◽  
...  

Programmed death 1 (PD-1), an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. PD-1 has two ligands: PD-1 ligand 1 (PD-L1), which is expressed broadly on hematopoietic and parenchymal cells, including pancreatic islet cells; and PD-L2, which is restricted to macrophages and dendritic cells. To investigate whether PD-L1 and PD-L2 have synergistic or unique roles in regulating T cell activation and tolerance, we generated mice lacking PD-L1 and PD-L2 (PD-L1/PD-L2−/− mice) and compared them to mice lacking either PD-L. PD-L1 and PD-L2 have overlapping functions in inhibiting interleukin-2 and interferon-γ production during T cell activation. However, PD-L1 has a unique and critical role in controlling self-reactive T cells in the pancreas. Our studies with bone marrow chimeras demonstrate that PD-L1/PD-L2 expression only on antigen-presenting cells is insufficient to prevent the early onset diabetes that develops in PD-L1/PD-L2−/− non-obese diabetic mice. PD-L1 expression in islets protects against immunopathology after transplantation of syngeneic islets into diabetic recipients. PD-L1 inhibits pathogenic self-reactive CD4+ T cell–mediated tissue destruction and effector cytokine production. These data provide evidence that PD-L1 expression on parenchymal cells rather than hematopoietic cells protects against autoimmune diabetes and point to a novel role for PD-1–PD-L1 interactions in mediating tissue tolerance.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6128-6137 ◽  
Author(s):  
Qiaozhen Kang ◽  
Yu Yu ◽  
Xinhong Pei ◽  
Richard Hughes ◽  
Susanne Heck ◽  
...  

Abstract Protein 4.1R (4.1R) was first identified in red cells where it plays an important role in maintaining mechanical stability of red cell membrane. 4.1R has also been shown to be expressed in T cells, but its function has been unclear. In the present study, we use 4.1R-deficient mice to explore the role of 4.1R in T cells. We show that 4.1R is recruited to the immunologic synapse after T cell–antigen receptor (TCR) stimulation. We show further that CD4+ T cells of 4.1R−/− mice are hyperactivated and that they displayed hyperproliferation and increased production of interleukin-2 (IL-2) and interferon γ (IFNγ). The hyperactivation results from enhanced phosphorylation of LAT and its downstream signaling molecule ERK. The 4.1R exerts its effect by binding directly to LAT, and thereby inhibiting its phosphorylation by ZAP-70. Moreover, mice deficient in 4.1R display an elevated humoral response to immunization with T cell–dependent antigen. Thus, we have defined a hitherto unrecognized role for 4.1R in negatively regulating T-cell activation by modulating intracellular signal transduction.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3806-3816 ◽  
Author(s):  
Joachim L. Schultze ◽  
Mark J. Seamon ◽  
Sabine Michalak ◽  
John G. Gribben ◽  
Lee M. Nadler

Follicular lymphomas (FLs) rarely induce clinically significant T-cell–mediated responses. We showed that freshly isolated tumor infiltrating T cells (T-TILs) lack tumor-specific cytotoxicity. Stimulation of these T cells with FL cells in the presence of interleukin-2 (IL-2) and/or costimulation via CD28 does not lead to T-cell activation and expansion. In contrast, when stimulated with FL cells preactivated via CD40, autologous T-TILs can be expanded by the addition of exogenous IL-2. These T cells can be further expanded in vitro by the addition of exogenous IL-4, IL-7, or interferon-γ, but not IL-12. Once activated, these T cells showed FL-directed cytotoxicity in four of five patients tested. We concluded that autologous cytotoxic anti-FL–specific T cells exist, but can only be detected in vitro under optimized conditions for T-cell stimulation and expansion. This suggests that their frequency in vivo is either very low or that the microenvironment does not provide the necessary signals to activate these T cells. This model system allows dissection of the requisite conditions for activation and expansion of lymphoma-directed cytotoxicity and may permit expansion of previously activated cytotoxic T cells for adoptive transfer.


1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Sign in / Sign up

Export Citation Format

Share Document