Modulation of regional brain function by deep brain stimulation: studies with positron emission tomography

2002 ◽  
Vol 15 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Maren Carbon ◽  
David Eidelberg
PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204740 ◽  
Author(s):  
Marta Casquero-Veiga ◽  
David García-García ◽  
Javier Pascau ◽  
Manuel Desco ◽  
María Luisa Soto-Montenegro

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katsuki Eguchi ◽  
Shinichi Shirai ◽  
Masaaki Matsushima ◽  
Takahiro Kano ◽  
Kazuyoshi Yamazaki ◽  
...  

Abstract Background Weight gain (WG) is a frequently reported side effect of subthalamic deep brain stimulation; however, the underlying mechanisms remain unclear. The active contact locations influence the clinical outcomes of subthalamic deep brain stimulation, but it is unclear whether WG is directly associated with the active contact locations. We aimed to determine whether WG is associated with the subthalamic deep brain stimulation active contact locations. Methods We enrolled 14 patients with Parkinson’s disease who underwent bilateral subthalamic deep brain stimulation between 2013 and 2019. Bodyweight and body mass index were measured before and one year following the surgery. The Lead-DBS Matlab toolbox was used to determine the active contact locations based on magnetic resonance imaging and computed tomography. We also created sweet spot maps for WG using voxel-wise statistics, based on volume of tissue activation and the WG of each patient. Fluorodeoxyglucose-positron emission tomography data were also acquired before and one year following surgery, and statistical parametric mapping was used to evaluate changes in brain metabolism. We examined which brain regions’ metabolism fluctuation significantly correlated with increased body mass index scores and positron emission tomography data. Results One year after surgery, the body mass index increase was 2.03 kg/m2. The sweet spots for WG were bilateral, mainly located dorsally outside of the subthalamic nucleus (STN). Furthermore, WG was correlated with increased metabolism in the left limbic and associative regions, including the middle temporal gyrus, inferior frontal gyrus, and orbital gyrus. Conclusions Although the mechanisms underlying WG following subthalamic deep brain stimulation are possibly multifactorial, our findings suggest that dorsal stimulation outside of STN may lead to WG. The metabolic changes in limbic and associative cortical regions after STN-DBS may also be one of the mechanisms underlying WG. Further studies are warranted to confirm whether dorsal stimulation outside of STN changes the activities of these cortical regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marta Casquero-Veiga ◽  
David García-García ◽  
Manuel Desco ◽  
María Luisa Soto-Montenegro

Deep brain stimulation (DBS) is a neurosurgery technique widely used in movement disorders, although its mechanism of action remains unclear. In fact, apart from the stimulation itself, the mechanical insertion of the electrode may play a crucial role. Here we aimed to distinguish between the insertional and the DBS effects on brain glucose metabolism. To this end, electrodes were implanted targeting the medial prefrontal cortex in five adult male Wistar rats. Positron Emission Tomography (PET) studies were performed before surgery (D0) and seven (D7) and nine days (D9) after that. DBS was applied during the 18FDG uptake of the D9 study. PET data were analysed with statistical parametric mapping. We found an electrode insertional effect in cortical areas, while DBS resulted in a more widespread metabolic pattern. The consequences of simultaneous electrode and DBS factors revealed a combination of both effects. Therefore, the insertion metabolic effects differed from the stimulation ones, which should be considered when assessing DBS protocols.


Sign in / Sign up

Export Citation Format

Share Document