The Role of Genetic Testing for Cancer Susceptibility in Gynecologic Practice

2007 ◽  
Vol 110 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Beth Y. Karlan ◽  
Andrew Berchuck ◽  
David Mutch
2020 ◽  
Vol 102 ◽  
Author(s):  
Yael Laitman ◽  
Shay Tzur ◽  
Ruben Attali ◽  
Amit Tirosh ◽  
Eitan Friedman

Abstract Pheochromocytoma (PCC) is a rare, mostly benign tumour of the adrenal medulla. Hereditary PCC accounts for ~35% of cases and has been associated with germline mutations in several cancer susceptibility genes (e.g., KIF1B, SDHB, VHL, SDHD, RET). We performed whole-exome sequencing in a family with four PCC-affected patients in two consecutive generations and identified a potential novel candidate pathogenic variant in the REXO2 gene that affects splicing (c.531-1G>T (NM 015523.3)), which co-segregated with the phenotype in the family. REXO2 encodes for RNA exonuclease 2 protein and localizes to 11q23, a chromosomal region displaying allelic imbalance in PCC. REXO2 protein has been associated with DNA repair, replication and recombination processes and thus its inactivation may contribute to tumorigenesis. While the study suggests that this novel REXO2 gene variant underlies PCC in this family, additional functional studies are required in order to establish the putative role of the REXO2 gene in PCC predisposition.


2020 ◽  
Vol 159 (2) ◽  
pp. e22-e23
Author(s):  
Danielle Collins Greenberg ◽  
Daniella Kamara ◽  
Zina Tatsugawa ◽  
Marlene Mendoza ◽  
Elizabeth Pineda ◽  
...  

2006 ◽  
Vol 38 (3) ◽  
pp. 219-224 ◽  
Author(s):  
Sivia Barnoy ◽  
Dorit Appel ◽  
Chava Peretz ◽  
Hana Meiraz ◽  
Mally Ehrenfeld

Heart Rhythm ◽  
2022 ◽  
Author(s):  
Valeria Novelli ◽  
Mirella Memmi ◽  
Alberto Malovini ◽  
Andrea Mazzanti ◽  
Nian Liu ◽  
...  

2020 ◽  
Author(s):  
Huaiyu Gu ◽  
Zhen Zhang ◽  
Yi-shuang Xiao ◽  
Ru Shen ◽  
Hong-chao Jiang ◽  
...  

Abstract Background: Retinoblastoma is a rare intraocular malignancy and typically initiated by inactivating biallelic mutations of RB1 gene. Each year, ~8,000 children worldwide are diagnosed for retinoblastoma. In high-income countries, patient survival is over 95% while low-income countries is ~30%.If disease is diagnosed early and treated in centers specializing in retinoblastoma, the survival might exceed 95% and many eyes could be safely treated and support a lifetime of good vision. In China, approximate 1,100 newly diagnosed cases are expected annually and 28 hospitals covering 25 provinces established centers classified by expertise and resources for better treatment options and follow-up. Comparing with other province of eastern China, Yunnan province is remote geographically. This might result that healthcare staff have low awareness of the role of genetic testing in management and screening in families.Methods: The patients with retinoblastoma were selected in Yunnan. DNA from blood was used for targeted gene sequencing. Then, an in-house bioinformatics pipeline was done to detect both single nucleotide variants and small insertions/deletions. The pathogenic mutations were identified and further confirmed by conventional methods and cosegregation in families.Results: Using our approach, targeted next generation sequencing was used to detect the mutation of these 12 probands. Bioinformatic predictions showed that nine mutations were found in our study and four were novel pathogenic variants in these nine mutations.Conclusions: It’s the first report to describe RB1 mutations in Yunnan children with retinoblastoma. This study would improve role of genetic testing for management and family screening.


2003 ◽  
Vol 21 (12) ◽  
pp. 2397-2406 ◽  

Executive Summary: As the leading organization representing cancer specialists involved in patient care and clinical research, the American Society of Clinical Oncology (ASCO) reaffirms its commitment to integrating cancer risk assessment and management, including molecular analysis of cancer predisposition genes, into the practice of oncology and preventive medicine. The primary goal of this effort is to foster expanded access to, and continued advances in, medical care provided to patients and families affected by hereditary cancer syndromes. The 1996 ASCO Statement on Genetic Testing for Cancer Susceptibility set forth specific recommendations relating to clinical practice, research needs, educational opportunities, requirement for informed consent, indications for genetic testing, regulation of laboratories, and protection from discrimination, as well as access to and reimbursement for cancer genetics services. In updating this Statement, ASCO endorses the following principles: Indications for Genetic Testing:ASCO recommends that genetic testing be offered when 1) the individual has personal or family history features suggestive of a genetic cancer susceptibility condition, 2) the test can be adequately interpreted, and 3) the results will aid in diagnosis or influence the medical or surgical management of the patient or family members at hereditary risk of cancer. ASCO recommends that genetic testing only be done in the setting of pre- and post-test counseling, which should include discussion of possible risks and benefits of cancer early detection and prevention modalities. Special Issues in Testing Children for Cancer Susceptibility:ASCO recommends that the decision to offer testing to potentially affected children should take into account the availability of evidence-based risk-reduction strategies and the probability of developing a malignancy during childhood. Where risk-reduction strategies are available or cancer predominantly develops in childhood, ASCO believes that the scope of parental authority encompasses the right to decide for or against testing. In the absence of increased risk of a childhood malignancy, ASCO recommends delaying genetic testing until an individual is of sufficient age to make an informed decision regarding such tests. As in other areas of pediatric care, the clinical cancer genetics professional should be an advocate for the best interests of the child. Counseling About Medical Management After Testing:ASCO recommends that oncologists include in pre- and post-test counseling the discussion of possible risks and benefits of cancer early-detection and prevention modalities, some of which have presumed but unproven efficacy for individuals at increased hereditary risk of cancer. Regulation of Genetic Testing:ASCO recommends strengthening regulatory oversight of laboratories that provide clinical cancer predisposition tests. These quality assurance mechanisms should include oversight of the reagents used in genetic testing, interlaboratory comparisons of reference samples, standardization of laboratory genetic test reports, and proficiency testing. Protection From Insurance and Employment Discrimination:ASCO supports establishing a federal law to prohibit discrimination by health insurance providers and employers on the basis of an individual’s inherited susceptibility to cancer. Protections against genetic discrimination should apply to those with group coverage, those with individual health insurance policies, and the uninsured. Coverage of Services:ASCO supports efforts to ensure that all individuals at significantly increased risk of hereditary cancer have access to appropriate genetic counseling, testing, screening, surveillance, and all related medical and surgical interventions, which should be covered without penalty by public and private third-party payers. Confidentiality and Communication of Familial Risk:ASCO recommends that providers make concerted efforts to protect the confidentiality of genetic information. However, they should remind patients of the importance of communicating test results to family members, as part of pretest counseling and informed consent discussions. ASCO believes that the cancer care provider’s obligations (if any) to at-risk relatives are best fulfilled by communication of familial risk to the person undergoing testing, emphasizing the importance of sharing this information with family members so that they may also benefit. Educational Opportunities in Genetics:ASCO is committed to continuing to provide educational opportunities for physicians and other health care providers regarding the methods of cancer risk assessment, the clinical characteristics of hereditary cancer susceptibility syndromes, and the range of issues related to genetic testing, including pre- and post-test genetic counseling, and risk management, so that health professionals may responsibly integrate the care of persons at increased genetic risk of cancer into the practice of clinical and preventive oncology. Special Issues Relating to Genetic Research on Human Tissues:ASCO recommends that all researchers proposing to use or store human biologic specimens for genetic studies should consult either the responsible institutional review board (IRB) or a comparable body specifically constituted to assess human tissue research, to determine the requirements for protection specific to the study under consideration. This consultation should take place before the project is initiated. The determination of the need for informed consent or authorization in such studies should depend on whether the research involves tests for genetic markers of known clinical significance and whether research data will be linked to protected health information, as well as other considerations specific to the study proposed. Special attention should also be paid to 1) whether future research findings will be disclosed to the research participants, 2) whether future contact of participants is planned, 3) whether and how protected health information about the tissue donors will be stored, and what will happen to study specimens after the trial ends. In addition, ASCO affirms the right of people contributing tissue to a databank to rescind their permission, in accordance with federal privacy regulations.


Sign in / Sign up

Export Citation Format

Share Document