Invasive Prenatal Diagnosis After Positive Cell-Free Fetal DNA Compared With Sequential Prenatal Screening

2014 ◽  
Vol 123 ◽  
pp. 41S
Author(s):  
Alexis Braverman ◽  
Jeffrey S. Dungan ◽  
Norman A. Ginsberg ◽  
Lee P. Shulman
2020 ◽  
Vol 19 (6) ◽  
pp. 124-132
Author(s):  
A.S. Olenev ◽  
◽  
E.E. Baranova ◽  
O.V. Sagaydak ◽  
A.M. Galaktionova ◽  
...  

Congenital malformations, chromosomal and monogenic disease play a significant role in perinatal mortality and child disability. According to the early prenatal screening results in the Russian Federation in 2018, the overall ratio of chromosomal anomaly prevalence is 1:250–1:300. Currently aneuploidy risk is calculated by using indirect biochemical and ultrasound markers, that have low sensitivity and specificity which can cause false positives and false negative results leading to unreasonable invasive procedures or missing chromosomal anomalies. It is well known that cell-free fetal DNA is detected in maternal blood. Whole‐genome sequencing based non-invasive prenatal testing (NIPT) can detect fetal chromosomal aneuploidy with high sensitivity as early as 10 weeks into pregnancy. The accuracy of determining fetal sex is also high: sensitivity and specificity are 98,9% and 99,9% respectively. Implementing molecular technology into clinical practice is required to improve prenatal diagnosis in the Russian Federation, icluding Moscow. Integration of NIPT to analyse cell-free fetal DNA will increase the efficiency of fetal chromosomal anomalies’ detection. However, there are some legal and ethical aspects to consider when integrating a new technology for wide-spread use. This review reveals arguable issues of NIPT integration into widespread clinical practice and possible ways of solving those issues. Key words: NIPT, noninvasive prenatal test, prenatal screening, fetal sex, invasive prenatal diagnosis, X-linked disease, chromosomal anomaly, chromosomal microarray analysis


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Luigi Carbone ◽  
Federica Cariati ◽  
Laura Sarno ◽  
Alessandro Conforti ◽  
Francesca Bagnulo ◽  
...  

Fetal aneuploidies are among the most common causes of miscarriages, perinatal mortality and neurodevelopmental impairment. During the last 70 years, many efforts have been made in order to improve prenatal diagnosis and prenatal screening of these conditions. Recently, the use of cell-free fetal DNA (cff-DNA) testing has been increasingly used in different countries, representing an opportunity for non-invasive prenatal screening of pregnant women. The aim of this narrative review is to describe the state of the art and the main strengths and limitations of this test for prenatal screening of fetal aneuploidies.


2021 ◽  
Vol 70 (1) ◽  
pp. 19-50
Author(s):  
Elena A. Kalashnikova ◽  
Andrey S. Glotov ◽  
Elena N. Andreyeva ◽  
Ilya Yu. Barkov ◽  
Galina Yu. Bobrovnik ◽  
...  

This review article offers an analysis of application of cell-free fetal DNA non-invasive prenatal screening test for chromosome abnormalities in the mothers blood in different countries. The diagnostic capacities of the method, its limitations, execution models and ethical aspects pertinent to its application are discussed. The data for the discordant results is shown and analyzed. The advantages of the genome-wide variant of cell-free fetal DNA analysis and the problems concerning its application in the mass screening are described. The main suggestion is to implement the contingent cell-free fetal DNA testing model for the common trisomies (for the chromosomes 21, 18 and 13) into the prenatal diagnostic screening programs in the Russian Federation. This novel model is based on the results of the mass combined first trimester prenatal screening in four federal subjects of the country completed by 2019 and is offered as an additional screening in the mid-level risk group (with cut-off from 1 : 100 to 1 : 500 or from 1 : 100 to 1 : 1000) defined according to the first trimester prenatal screening results. The basic requirements for the implementation of the contingent model in the Russian Federation are stated.


2012 ◽  
Vol 15 (Supplement) ◽  
pp. 17-26 ◽  
Author(s):  
Neil D. Avent ◽  
A Webb ◽  
TE Madgett ◽  
T Miran ◽  
K Sillence ◽  
...  

ABSTRACT Current invasive procedures [amniocentesis and chorionic villus sampling (CVS)] pose a risk to mother and fetus and such diagnostic procedures are available only to high risk pregnancies limiting aneuploidy detection rate. This review seeks to highlight the necessity of investing in non invasive prenatal diagnosis (NIPD) and how NIPD would improve patient safety and detection rate as well as allowing detection earlier in pregnancy. Non invasive prenatal diagnosis can take either a proteomics approach or nucleic acid-based approach; this review focuses on the latter. Since the discovery of cell free fetal DNA (cffDNA) and fetal RNA in maternal plasma, procedures have been developed for detection for monogenic traits and for some have become well established (e.g., RHD blood group status). However, NIPD of aneuploidies remains technically challenging. This review examines currently published literature evaluating techniques and approaches that have been suggested and developed for aneuploidy detection, highlighting their advantages and limitations and areas for further research.


2009 ◽  
Vol 55 (12) ◽  
pp. 2144-2152 ◽  
Author(s):  
Thomas Hahn ◽  
Klaus S Drese ◽  
Ciara K O'Sullivan

Abstract Background: Routine prenatal diagnosis of chromosomal anomalies is based on invasive procedures, which carry a risk of approximately 1%–2% for loss of pregnancy. An alternative to these inherently invasive techniques is to isolate fetal DNA circulating in the pregnant mother’s plasma. Free fetal DNA circulates in maternal plasma primarily as fragments of lengths <500 bp, with a majority being <300 bp. Separating these fragments by size facilitates an increase in the ratio of fetal to maternal DNA. Methods: We describe our development of a microsystem for the enrichment and isolation of cell-free fetal DNA from maternal plasma. The first step involves a high-volume extraction from large samples of maternal plasma. The resulting 80-μL eluate is introduced into a polymeric microsystem within which DNA is trapped and preconcentrated. This step is followed by a transient isotachophoresis step in which the sample stacks within a neighboring channel for subsequent size separation and is recovered via an outlet at the end of the channel. Results: Recovered fractions of fetal DNA were concentrated 4–8 times over those in preconcentration samples. With plasma samples from pregnant women, we detected the fetal SRY gene (sex determining region Y) exclusively in the fragment fraction of <500 bp, whereas a LEP gene (leptin) fragment was detected in both the shorter and longer recovery fractions. Conclusions: The microdevice we have described has the potential to open new perspectives in noninvasive prenatal diagnosis by facilitating the isolation of fetal DNA from maternal plasma in an integrated, inexpensive, and easy-to-use microsystem.


Sign in / Sign up

Export Citation Format

Share Document