Changes in First-Pass Interstitial Kinetics of DTPA in Myocardium Submitted to Low-Flow Ischemia

2005 ◽  
Vol 40 (12) ◽  
pp. 766-772 ◽  
Author(s):  
Fatiha Maskali ◽  
Adey Ayalew ◽  
Pierre-Yves Marie ◽  
Patrick Menu ◽  
Laurent Antunes ◽  
...  
Keyword(s):  
Low Flow ◽  
2000 ◽  
Vol 27 (11) ◽  
pp. 1632-1640 ◽  
Author(s):  
Adey Ayalew ◽  
Pierre Y. Marie ◽  
Patrick Menu ◽  
Paul M. Mertes ◽  
Nathalie Hassan ◽  
...  

1984 ◽  
Vol 57 (3) ◽  
pp. 711-719 ◽  
Author(s):  
A. L. Muir ◽  
M. Cruz ◽  
B. A. Martin ◽  
H. Thommasen ◽  
A. Belzberg ◽  
...  

In six normal supine subjects epinephrine infusion produced a greater leukocytosis with smaller changes in heart rate and blood pressure than did norepinephrine or isoproterenol. Upright exercise in those subjects produced a greater leukocytosis than supine exercise at the same work load. To determine the lung's participation in these events, indium-labeled neutrophils (PMN) were given to four of the subjects. We found that 20–25% were retained in the first pass through the lung when compared with technetium-labeled erythrocytes. The number of labeled PMN in the lung gradually decreased and the number in the spleen and the liver increased. Exercise and catecholamine infusion caused an acceleration in the release of labeled cells from the lung, an increase in both labeled and unlabeled cells in the peripheral blood, and an increase in the number of labeled cells in the liver and spleen. This suggests that increased perfusion of low-flow areas in the lung may contribute to the increased leukocytosis seen in association with both exercise and catecholamine infusion.


2000 ◽  
Vol 93 (4) ◽  
pp. 1085-1094 ◽  
Author(s):  
Richard N. Upton ◽  
Guy L. Ludbrook ◽  
Cliff Grant ◽  
David J. Doolette

Background Thiopental and propofol are highly lipid-soluble, and their entry into the brain often is assumed to be limited by cerebral blood flow rather than by a diffusion barrier. However, there is little direct experimental evidence for this assumption. Methods The cerebral kinetics of thiopental and propofol were examined over a range of cerebral blood flows using five and six chronically instrumented sheep, respectively. Using anesthesia (2.0% halothane), three steady state levels of cerebral blood flow (low, medium, and high) were achieved in random order by altering arterial carbon dioxide tension. For each flow state, 250 mg thiopental or 100 mg propofol was infused intravenously over 2 min. To quantify cerebral kinetics, arterial and sagittal sinus blood was sampled rapidly for 20 min from the start of the infusion, and 1.5 h was allowed between consecutive infusions. Various models of cerebral kinetics were examined for their ability to account for the data. Results The mean baseline cerebral blood flows for the "high" flow state were over threefold greater than those for the low. For the high-flow state the normalized arteriovenous concentration difference across the brain was smaller than for the low-flow state, for both drugs. The data were better described by a model with partial membrane limitation than those with only flow limitation or dispersion. Conclusions The cerebral kinetics of thiopental and propofol after bolus injection were dependent on cerebral blood flow, despite partial diffusion limitation. Higher flows produce higher peak cerebral concentrations.


Abstracts ◽  
1978 ◽  
pp. 939
Author(s):  
J. Schou ◽  
L. Gram ◽  
W.L. Way ◽  
B. Gustavsson ◽  
N.-O. Bodin ◽  
...  

1999 ◽  
Vol 91 (6) ◽  
pp. 1780-1780 ◽  
Author(s):  
Jette A. Kuipers ◽  
Fred Boer ◽  
Wim Olieman ◽  
Anton G. L. Burm ◽  
James G. Bovill

Background The principal site for elimination of propofol is the liver. The clearance of propofol exceeds hepatic blood flow; therefore, extrahepatic clearance is thought to contribute to its elimination. This study examined the pulmonary kinetics of propofol using part of an indocyanine green (ICG) recirculatory model. Methods Ten sheep, immobilized in a hammock, received injections of propofol (4 mg/kg) and ICG (25 mg) via two semipermanent catheters in the right internal jugular vein. Arterial blood samples were obtained from the carotid artery. The ICG injection was given for measurement of intravascular recirculatory parameters and determination of differences in propofol and ICG concentration-time profiles. No other medication was given during the experiment, and the sheep were not intubated. The arterial concentration-time curves of ICG were analyzed with a recirculatory model. The pulmonary uptake and elimination of propofol was analyzed with the central part of that model extended with a pulmonary tissue compartment allowing elimination from that compartment. Results During the experiment, cardiac output was 3.90+/-0.72 l/min (mean +/- SD). The blood volume in heart and lungs, measured with ICG, was 0.66+/-0.07 l. A pulmonary tissue compartment of 0.47+/-0.16 l was found for propofol. The pulmonary first-pass elimination of propofol was 1.14+/-0.23 l/min. Thirty percent of the dose was eliminated during the first pass through the lungs. Conclusions Recirculatory modeling of ICG allows modeling of the first-pass pulmonary kinetics of propofol concurrently. Propofol undergoes extensive uptake and first-pass elimination in the lungs.


2004 ◽  
Vol 25 (5) ◽  
pp. 475-478 ◽  
Author(s):  
Adey Ayalew ◽  
Fatiha Maskali ◽  
Sandra Audonnet ◽  
Pierre-Yves Marie ◽  
Patrick Menu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document