Renal Blood Flow Measurements with Use of Phase-Contrast Magnetic Resonance Imaging: Normal Values and Reproducibility

2005 ◽  
Vol 16 (6) ◽  
pp. 807-814 ◽  
Author(s):  
Liesbeth Bax ◽  
Chris J.G. Bakker ◽  
Willemijn M. Klein ◽  
Niels Blanken ◽  
Jaap J. Beutler ◽  
...  
Author(s):  
Longchuan Li ◽  
Mark Doyle ◽  
Geetha Rayarao ◽  
Eduardo Kortright ◽  
Andreas S. Anayiotos

The quantitative measurement of blood flow using magnetic resonance imaging (MRI) has been a topic of research for over twenty years. At present, blood flow measurements are largely performed using two-dimensional phase contrast magnetic resonance (PC-MR). However, when high acceleration terms are present (i.e., valve regurgitation or stenosis), accuracy of conventional (Con) cardiac PC-MR can suffer: when data are acquired at a relatively poor temporal resolution, the data extraction process, which essentially is one of comparison, makes the Con PC-MR data sensitive to temporal acceleration. Here, a novel PC-MR technique termed Self Reference (SR) PC-MR is introduced that overcomes these limitations by eliminating the need for comparing paired data sets.


EP Europace ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 530-537 ◽  
Author(s):  
Marianna Gardarsdottir ◽  
Sigurdur Sigurdsson ◽  
Thor Aspelund ◽  
Valdis Anna Gardarsdottir ◽  
Lars Forsberg ◽  
...  

Abstract Aims Atrial fibrillation (AF) has been associated with reduced brain volume, cognitive impairment, and reduced cerebral blood flow. The causes of reduced cerebral blood flow in AF are unknown, but no reduction was seen in individuals without the arrhythmia in a previous study. The aim of this study was to test the hypothesis that brain perfusion, measured with magnetic resonance imaging (MRI), improves after cardioversion of AF to sinus rhythm (SR). Methods and results All patients undergoing elective cardioversion at our institution were invited to participate. A total of 44 individuals were included. Magnetic resonance imaging studies were done before and after cardioversion with both brain perfusion and cerebral blood flow measurements. However, 17 did not complete the second MRI as they had a recurrence of AF during the observation period (recurrent AF group), leaving 17 in the SR group and 10 in the AF group to complete both measurements. Brain perfusion increased after cardioversion to SR by 4.9 mL/100 g/min in the whole brain (P < 0.001) and by 5.6 mL/100 g/min in grey matter (P < 0.001). Cerebral blood flow increased by 58.6 mL/min (P < 0.05). Both brain perfusion and cerebral blood flow remained unchanged when cardioversion was unsuccessful. Conclusion In this study of individuals undergoing elective cardioversion for AF, restoration, and maintenance of SR for at least 10 weeks after was associated with an improvement of brain perfusion and cerebral blood flow measured by both arterial spin labelling and phase contrast MRI. In those individuals where cardioversion was unsuccessful, there was no change in perfusion or blood flow.


2007 ◽  
Vol 27 (9) ◽  
pp. 1563-1572 ◽  
Author(s):  
Souraya Stoquart-ElSankari ◽  
Olivier Balédent ◽  
Catherine Gondry-Jouet ◽  
Malek Makki ◽  
Olivier Godefroy ◽  
...  

Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive reliable technique, which enables quantification of cerebrospinal fluid (CSF) and total cerebral blood flows (tCBF). Although it is used to study hydrodynamic cerebral disorders in the elderly group (hydrocephalus), there is no published evaluation of aging effects on both tCBF and CSF flows, and on their mechanical coupling. Nineteen young (mean age 27 ± 4 years) and 12 elderly (71 ± 9 years) healthy volunteers underwent cerebral MRI using 1.5 T scanner. Phase-contrast magnetic resonance imaging pulse sequence was performed at the aqueductal and cervical levels. Cerebrospinal fluid and blood flow curves were then calculated over the cardiac cycle, to extract the characteristic parameters: mean and peak flows, their latencies, and stroke volumes for CSF (cervical and aqueductal) and vascular flows. Total cerebral blood flow was ( P < 0.01) decreased significantly in the elderly group when compared with the young subjects with a linear correlation with age observed only in the elderly group ( R2 = 0.7; P = 0.05). Arteriovenous delay was preserved with aging. The CSF stroke volumes were significantly reduced in the elderly, at both aqueductal ( P < 0.01) and cervical ( P < 0.05) levels, whereas aqueduct/cervical proportion ( P = 0.9) was preserved. This is the first work to study aging effects on both CSF and vascular cerebral flows. Data showed (1) tCBF decrease, (2) proportional aqueductal and cervical CSF pulsations reduction as a result of arterial loss of pulsatility, and (3) preserved intracerebral compliance with aging. These results should be used as reference values, to help understand the pathophysiology of degenerative dementia and cerebral hydrodynamic disorders as hydrocephalus.


Sign in / Sign up

Export Citation Format

Share Document