DOUBLE-NEGATIVE REGULATORY T CELLS BASED THERAPEUTIC APPROACH TO PREVENT AND CURE TYPE I DIABETES IN NOD MICE.

2008 ◽  
Vol 86 (Supplement) ◽  
pp. 309
Author(s):  
D Zhang ◽  
W Zhang ◽  
Y Liu ◽  
Y Tian ◽  
X X. Zheng
2013 ◽  
Vol 43 (5) ◽  
pp. 1356-1362 ◽  
Author(s):  
Julie Tellier ◽  
Andry Andrianjaka ◽  
Rita Vicente ◽  
Nicolas Thiault ◽  
Geneviève Enault ◽  
...  

2019 ◽  
Vol 32 (2) ◽  
pp. 117-131
Author(s):  
Minoru Matsumoto ◽  
Koichi Tsuneyama ◽  
Junko Morimoto ◽  
Kazuyoshi Hosomichi ◽  
Mitsuru Matsumoto ◽  
...  

Abstract Tissue-specific autoimmune diseases are assumed to arise through malfunction of two checkpoints for immune tolerance: defective elimination of autoreactive T cells in the thymus and activation of these T cells by corresponding autoantigens in the periphery. However, evidence for this model and the outcome of such alterations in each or both of the tolerance mechanisms have not been sufficiently investigated. We studied these issues by expressing human AIRE (huAIRE) as a modifier of tolerance function in NOD mice wherein the defects of thymic and peripheral tolerance together cause type I diabetes (T1D). Additive huAIRE expression in the thymic stroma had no major impact on the production of diabetogenic T cells in the thymus. In contrast, huAIRE expression in peripheral antigen-presenting cells (APCs) rendered the mice resistant to T1D, while maintaining other tissue-specific autoimmune responses and antibody production against an exogenous protein antigen, because of the loss of Xcr1+ dendritic cells, an essential component for activating diabetogenic T cells in the periphery. These results contrast with our recent demonstration that huAIRE expression in both the thymic stroma and peripheral APCs resulted in the paradoxical development of muscle-specific autoimmunity. Our results reveal that tissue-specific autoimmunity is differentially controlled by a combination of thymic function and peripheral tolerance, which can be manipulated by expression of huAIRE/Aire in each or both of the tolerance mechanisms.


1997 ◽  
Vol 186 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Syamasundar V. Pakala ◽  
Michael O. Kurrer ◽  
Jonathan D. Katz

Autoimmune diabetes is caused by the CD4+, T helper 1 (Th1) cell-mediated apoptosis of insulin-producing β cells. We have previously shown that Th2 T cells bearing the same T cell receptor (TCR) as the diabetogenic Th1 T cells invade islets in neonatal nonobese diabetic (NOD) mice but fail to cause disease. Moreover, when mixed in excess and cotransferred with Th1 T cells, Th2 T cells could not protect NOD neonates from Th1-mediated diabetes. We have now found, to our great surprise, the same Th2 T cells that produced a harmless insulitis in neonatal NOD mice produced intense and generalized pancreatitis and insulitis associated with islet cell necrosis, abscess formation, and subsequent diabetes when transferred into immunocompromised NOD.scid mice. These lesions resembled allergic inflamation and contained a large eosinophilic infiltrate. Moreover, the Th2-mediated destruction of islet cells was mediated by local interleukin-10 (IL-10) production but not by IL-4. These findings indicate that under certain conditions Th2 T cells may not produce a benign or protective insulitis but rather acute pathology and disease. Additionally, these results lead us to question the feasibility of Th2-based therapy in type I diabetes, especially in immunosuppressed recipients of islet cell transplants.


Diabetes ◽  
2021 ◽  
pp. db201072
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

2018 ◽  
Author(s):  
Marcos Iglesias ◽  
Anirudh Arun ◽  
Maria Chicco ◽  
Brandon Lam ◽  
Conover Talbot ◽  
...  

AbstractDestruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in NOD mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored via blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.AbbreviationsALNaxillary lymph nodesIL-10interleukin-10MFImean fluorescence intensityMLNmesentheric lymph nodesNODnonobese diabetic micePLNpancreatic lymph nodesTI-IFNtype-1 InterferonsTmemmemory T cellsTregregulatory T cells


Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985098 ◽  
Author(s):  
Shuji Kojima ◽  
Jerry M. Cuttler ◽  
Noriko Shimura ◽  
Hironobu Koga ◽  
Akihisa Murata ◽  
...  

We report on the application of radon therapy to relieve the suffering of 2 patients with autoimmune diseases, one with pemphigus with an old myocardial infarction and diabetes mellitus and the other with type I diabetes. We include a lengthy discussion of the biological mechanisms that we believe produced the observed benefits. During the 6 to 9 months of the treatments, the marker values decreased to the upper limit of their normal ranges and the symptoms of the diseases were alleviated. Disorders of Th1/Th2 balance are implicated in the onset of many diseases, including autoimmune diseases. Our decision to give radon (222Rn) therapy to these patients was based on the results of 2 similar case reports and our earlier mouse experiments, which indicated that low doses of radiation induce regulatory T cells. Regulatory T cells regulate the T helper 1 cell and the T helper 2 cell balance. There are more than 80 different autoimmune diseases that are treated with anti-inflammatory agents or immune-suppressing drugs because the exact causes of these diseases and the cures are unknown. These and other case reports indicate that proper radon therapy is an effective treatment. We urge physicians to consider radon as a standard therapy for refractory autoimmune diseases.


1991 ◽  
Vol 174 (3) ◽  
pp. 633-638 ◽  
Author(s):  
J A Shizuru ◽  
C Taylor-Edwards ◽  
A Livingstone ◽  
C G Fathman

It has been demonstrated, in certain autoimmune disease models, that pathogenic T cells express antigen receptors of limited diversity. It has been suggested that the T cells responsible for the pathogenesis of type I diabetes mellitus might similarly demonstrate restricted T cell receptor (TCR) usage. Recently, attempts have been made to identify the V beta subset(s) that initiates and/or perpetuates the antiislet response in a mouse model of spontaneous autoimmune diabetes (non-obese diabetic [NOD] mice). In studies reported here, we have bred NOD mice to a mouse strain that congenitally lacks approximately one-half of the conventional TCR V beta alleles. Included in this deletion are TCR V beta gene products previously implicated as being involved in the pathogenesis of NOD disease. By studying second backcross-intercross animals, we were able to demonstrate that this deletion of TCR V beta gene segments did not prevent the development of insulitis or diabetes.


2007 ◽  
Vol 123 ◽  
pp. S16-S17
Author(s):  
Dong Zhang ◽  
Yan Tian ◽  
Nicolas Degauque ◽  
Wei Yang ◽  
Allison Mikita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document