Correlation of Posterior Ligamentous Complex Injury and Neurological Injury to Loss of Vertebral Body Height, Kyphosis, and Canal Compromise

Spine ◽  
2012 ◽  
Vol 37 (13) ◽  
pp. 1142-1150 ◽  
Author(s):  
Kristen Radcliff ◽  
Brian W. Su ◽  
Christopher K. Kepler ◽  
Todd Rubin ◽  
Adam L. Shimer ◽  
...  
2014 ◽  
Vol 13 (4) ◽  
pp. 315-317 ◽  
Author(s):  
Daniel Alberto Ramírez Islas ◽  
José María Jiménez Ávila

Objectives: To analyze the clinical and radiographic outcomes in fracture of the fourth lumbar vertebra, under conservative or surgical treatment. Methods: Patients diagnosed with L4 fracture with or without neurological injury were studied and to whom conservative or surgical treatment was provided. Radiographic measurements were performed taking into account the kyphosis angle, the sagittal index, loss of vertebral body height, percentage of canal occlusion and height compression percentage. Results: Twenty-five patients were treated, five conservatively and 20 surgically. The vertebral kyphosis angle in both groups was 12°, no regional kyphosis was present, the sagittal index was 11.9 (Farcy), the loss of vertebral body height was 53.17%, the percentage of canal occlusion was 23% and the height compression percentage was 38.06%. The residual pain according to the visual analog scale was two in both groups. Conclusions: Patients with a fractured L4 have a satisfactory outcome with both treatments, the height of the vertebral body remains the same, the lordosis is preserved and therefore the sagittal balance, allowing recovering the mechanical functions of the spine as opposed to other segment fractures.


2016 ◽  
Vol 07 (S 01) ◽  
pp. S057-S061
Author(s):  
Mehmet Onur Yüksel ◽  
Mehmet Sabri Gürbüz ◽  
Şevki Gök ◽  
Numan Karaarslan ◽  
Merih İş ◽  
...  

ABSTRACT Aim: Our aim was to determine whether a combination of sagittal index (SI), canal compromise (CC), and loss of vertebral body height (LVBH) is associated with the severity of neurological injury in patients with thoracolumbar burst fractures. Materials and Methods: Seventy-four patients with thoracolumbar burst fracture undergoing instrumentation between 2010 and 2015 were analyzed retrospectively. The degree of neurological injury was determined using the American Spinal Injury Association (ASIA) scoring system. The association between the morphology of the fracture and the severity of neurological injury was analyzed. Results: There was a strong association between fracture morphology and the severity of neurological injury. Of the patients, 77.5% with SI ≥20°, 81.6% with CC ≥40%, and 100% with LVBH ≥50% had lesion according to ASIA. All of 7 patients with ASIA A had SI ≥20°, CC ≥40%, and LVBH ≥50%. On the other hand, 79% of the patients with ASIA E had SI <20°, 83.7% of the patients with ASIA E had CC <40%, and all of the patients with ASIA E had LVBH <50%. SI, CC, and LVBH were lower in neurologically intact patients (ASIA E), whereas they were higher in patients with neurological deficits (ASIA A, B, C, D) (P = 0.001; P < 0.01). These measurements had 100% negative predictive values and relatively high positive predictive values. Conclusion: SI, CC, and LVBH are significantly associated with the severity of neurological injury in patients with thoracolumbar burst fractures. The patients with SI >25°, the patients with CC >40%, and the patients with LVBH >50% are likely to have a more severe neurological injury.


2021 ◽  
Author(s):  
Landa Shi ◽  
Dean Chou ◽  
Yuqiang Wang ◽  
Mirwais Alizada ◽  
Yilin Liu

Abstract Objective: to investigate the effect of CT-assisted limited decompression in the management of single segment A3 lumbar burst fracture. Method: A retrospective study of 106 cases with a single-level Magerl type A3 lumbar burst fractures treated with short-segment posterior internal fixation and limited decompression from January 2015 to June 2019 was performed. Patients were divided into two groups: CT-assisted and non-CT-assisted. Perioperative factors, clinical outcomes, postoperative complications, imaging parameters and health-related quality of life (HRQoL) were evaluated. Results: There was no significant difference between the two groups in the kyphosis, anterior vertebral body height loss, posterior vertebral body height loss, operative time, and postoperative complications. The visual analogue score (VAS) and spinal canal encroachment in the CT-assisted group were lower than those in the non-CT-assisted group (P < 0.05). The Japanese Orthopaedic Association score (JOA), the simplified HRQoL scale and American Spinal Injury Association (ASIA) Spinal Cord Injury Grade in the CT-assisted group were higher than those in the non-CT-assisted group (P < 0.05).Conclusion: CT-assisted limited decompression in the treatment of single-segment A3 lumbar burst fracture can achieve better fracture reduction and surgical results, and improve the long-term recovery of neurological function and quality of life of the patients.


2021 ◽  
Author(s):  
Jesús Payo-Ollero ◽  
Rafael Llombart-Blanco ◽  
Carlos Villas ◽  
Matías Alfonso

Abstract Changes in vertebral body height depend on various factors which were analyzed in isolation and not as a whole. The aim of this study is to analyze what factors might influence restoration of vertebral body height after vertebral augmentation. We analyzed 48 patients (108 vertebrae) with osteoporotic vertebral fractures underwent vertebral augmentation when conservative treatment proved unsatisfactory. Analyses were carried out at the time of the fracture, during surgery (pre-cementation and post-cementation), at first medical check-up (6 weeks post-surgery) and at last medical check-up. Average vertebral height was measured and differences from preoperative values calculated at each timepoint. Pearson correlation coefficient and linear multivariable regression were carried out at the different timepoints. The time since vertebral fracture was 60.4 ± 41.7 days. Patients’ average age was 70.9 ± 9.3-years. The total follow-up was 1.43 ± 1-year. After vertebral cementation there was an increase in vertebral body height of + 0.3cm (13.6%). During post-operative follow-up, there was a progressive collapse of the vertebral body and pre-surgical height was reached. The factors that most influenced vertebral height restoration were: grade III collapse, intervertebral-vacuum-cleft (IVVC), and use of a flexible trocar before cement augmentation. The factor that negatively influenced vertebral body height restoration was location in the thoracolumbar spine.


2019 ◽  
Vol 30 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Sultan Alsalmi ◽  
Cyrille Capel ◽  
Louis Chenin ◽  
Johann Peltier ◽  
Michel Lefranc

OBJECTIVEIntravertebral augmentation (IVA) is a reliable minimally invasive technique for treating Magerl type A vertebral body fractures. However, poor correction of kyphotic angulation, the risk of cement leakage, and significant exposure to radiation (for the surgeon, the operating room staff, and the patient) remain significant issues. The authors conducted a study to assess the value of robot-assisted IVA (RA-IVA) for thoracolumbar vertebral body fractures.METHODSThe authors performed a retrospective, single-center study of patients who had undergone RA-IVA or conventional fluoroscopy-guided IVA (F-IVA) for thoracolumbar vertebral body fractures. Installation and operating times, guidance accuracy, residual local kyphosis, degree of restoration of vertebral body height, incidence of cement leakage, rate of morbidity, length of hospital stay, and radiation-related data were recorded.RESULTSData obtained in 30 patients who underwent RA-IVA were compared with those obtained in 30 patients who underwent F-IVA during the same period (the surgical indications were identical, but the surgeons were different). The mean ± SD installation time in the RA-IVA group (24 ± 7.5 minutes) was significantly shorter (p = 0.005) than that in the F-IVA group (26 ± 8 minutes). The mean operating time for the RA-IVA group (52 ± 11 minutes) was significantly longer (p = 0.026) than that for the F-IVA group (30 ± 11 minutes). All RA-IVAs and F-IVAs were Ravi’s scale grade A (no pedicle breach). The mean degree of residual local kyphosis (4.7° ± 3.15°) and the percentage of vertebral body height restoration (63.6% ± 21.4%) were significantly better after RA-IVA than after F-IVA (8.4° ± 5.4° and 30% ± 34%, respectively). The incidence of cement leakage was significantly lower in the RA-IVA group (p < 0.05). The mean length of hospital stay after surgery was 3.2 days for both groups. No surgery-related complications occurred in either group. With RA-IVA, the mean radiation exposure was 438 ± 147 mGy × cm for the patient and 30 ± 17 mGy for the surgeon.CONCLUSIONSRA-IVA provided better vertebral body fracture correction than the conventional F-IVA. However, RA-IVA requires more time than F-IVA.


2020 ◽  
Author(s):  
Chongqing Xu ◽  
Mengchen Yin ◽  
Wen Mo

Abstract Background The clinical efficacy of vertebroplasty and kyphoplasty treating osteoporotic vertebral compression fractures (OVCF) has been widely recognized in recent years. However, there are also disadvantages of bone cement leakage (BCL), limited correction of kyphosis and recovery of vertebral height. Nowadays, in view of these shortcomings, vesselplasty has been widely used in clinical practice. The objective of this study is to assess its clinical effect and application value for the treatment of OVCF with peripheral wall damage. Methods/Design: All 62 patients (70 vertebrae) treated for OVCF with peripheral wall damage using vesselplasty were involved and retrospectively analyzed. The data collection included operation time, volume of bone cement, relevant surgical complications, visual analog scale (VAS), Oswestry disability index (ODI), vertebral body height and kyphosis Cobb angle. Results The time of operation was 20–65 (34.5 ± 10.5) minutes. The volume of bone cement was 3–8 (5.3 ± 1.3) ml. VAS and ODI at different time points after operation were decreased compared with before operation (all P < 0.05). There were no statistical differences between VAS or ODI at different postoperative time points (P > 0.05). Vertebral body height and Cobb angle at different time points after operation were improved compared with before operation (all P < 0.05). There were no statistical differences between vertebral body height or Cobb angle at different postoperative time points (all P > 0.05). Conclusion Vesselplasty can reduce the risk of BCL and better control the dispersion of bone cement in the treatment of OVCF. It has a definite effect in relieving pain, restoring the vertebral body height and correcting the kyphosis caused by injured vertebrae, especially in OVCF with peripheral wall damage. Therefore, vesselplasty is safe and worthy of clinical application.


2019 ◽  
Vol 104 (7-8) ◽  
pp. 398-405
Author(s):  
Weixing Xie

Background Percutaneous vertebral augmentation (PVA) is widely applied for the treatment of osteoporotic vertebral fractures. The degree of vertebral body height restoration and deformity correction after the procedure is not consistent. Methods We retrospectively reviewed 97 patients who underwent PVA, because of osteoporotic vertebral compression fractures. The following data about the patients were recorded: age, sex, bone density, number of treated vertebrae, severity of fracture of the treated vertebrae, operative approach (PVP or PKP), volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, cement leakage, postoperative vertebral body height restoration ratio, follow-up period, and latest follow-up height loss ratio. Bivariate regression analysis and t-test were applied for univariate analysis, while multivariate linear regression analysis was applied for multivariate analysis. Results The postoperative vertebral body height restoration ratio was (14.7% ± 15.2%), and the last follow-up height loss ratio was (13.5% ± 11.5%). The multivariate analysis showed that the number of treated vertebrae, preoperative vertebral compression ratio, and preoperative local kyphosis angle are the main factors influencing the postoperative vertebral body height restoration. The univariate analysis also showed that only the postoperative vertebral body height restoration ratio is related to the last follow-up height loss ratio. Conclusions The number of treated vertebrae, preoperative vertebral compression ratio, and preoperative local kyphosis angle are the main influencing factors of patients' vertebral body height restoration after PVA, and the postoperative vertebral body height restoration ratio is the main factor influencing the last follow-up height loss ratio.


2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Ali R. Hamdan ◽  
Radwan Nouby Mahmoud ◽  
Ahmed G. Tammam ◽  
Eslam El-Sayed El-Khateeb

Abstract Background Thoracolumbar fractures represent a widespread injuries that can cause significant disability and strain the healthcare system. Different surgical approaches are described in the literature. This study was conducted to evaluate the fractured level inclusion in short-segment fixation of thoracolumbar junction spine fractures. Results Preoperative neurological deficit was reported in seven patients ranging from ASIA grade C to D. All of these patients improved to grade E by the end of the follow-up period, except for one patient who improved from grade C to D. The mean Oswestry Disability Index was 19.87%. The mean postoperative Cobb angle was 11.77° which significantly improved compared to a preoperative value of 19.37°. There was a significant improvement in the postoperative anterior and posterior vertebral body height compared to the preoperative values. The vertebral body compression ratio significantly improved during the postoperative period to a mean of 84% compared to 76% preoperative. Conclusions There was significant improvement of the postoperative values of the mean Cobb angle, the anterior and the posterior vertebral body height as well as the vertebral body compression ratio compared to the preoperative values.


Sign in / Sign up

Export Citation Format

Share Document