Processing of trigeminocervical nociceptive afferent input by neuronal circuity in the upper cervical lamina I

Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Elisabete C. Fernandes ◽  
José Carlos-Ferreira ◽  
Liliana L. Luz ◽  
Eva Kokai ◽  
Zoltan Meszar ◽  
...  
1996 ◽  
Vol 76 (4) ◽  
pp. 2439-2446 ◽  
Author(s):  
N. Isu ◽  
D. B. Thomson ◽  
V. J. Wilson

1. Previous studies of vestibular effects on the upper cervical cord have concentrated on the lateral and medial vestibulospinal tracts and on the actions that they exert on neck motoneurons and other neurons in the ventral horn. It is known, however, that both the rostral and the caudal areas of the vestibular nuclei (VN) give rise to axons that are located in the dorsal and dorsolateral funiculi and that terminate in the dorsal horn. A primary goal of our experiments was to investigate the effect of VN stimulation on neurons dorsal to lamina VII. 2. In decerebrate cats with the caudal cerebellar vermis removed, we stimulated different areas of the VN with an array of electrode. The area of stimulation extended from the caudal tip of the descending nucleus to Deiters' nucleus, and was divided into rostral and caudal halves with the use of the descending nucleus as a reference. For control purposes some stimulating points were placed in the external cuneate nucleus and restiform body. 3. We tested the effects of VN stimulation on spontaneously firing neurons in the ipsilateral C2 and C3 segments. For purposes of classification the gray matter was divided into four zones corresponding approximately to laminae 1-IV, V-VI, VII, and VIII of Rexed. Overall, the activity of 39 of 84 neurons was influenced from one or more stimulating sites. For six cells there was some possibility of current spread to the external cuneate nucleus or to the underlying reticular formation. 4. VN-evoked effects could consist of facilitation, or, less often, inhibition. In the majority of facilitated neurons conditioning stimuli evoked a synchronized, short-latency, increase in firing probability. When evoked by single stimuli this facilitation was considered monosynaptic. Facilitation that was diffuse, or that was only evoked by two or more stimuli, presumably involved more complex pathways. The latency of inhibition could not be measured, but was short. 5. Stimulation of either the rostral or caudal VN had no effect on neurons in laminae I-IV. Electrodes placed rostrally had little effect on neurons in laminae V-VI, but influenced more than half the neurons in laminae VII-VIII. Conversely, electrodes placed caudally were most effective on cells in laminae V-VII, although they also influenced some neurons in lamina VIII. 6. Stimulation of the dorsal rami influenced most neurons in laminae V-VI, and about a quarter of the neurons in laminae VII-VIII. When tested, there was often convergence between vestibulospinal and peripheral inputs. 7. Our results provide physiological evidence that vestibulospinal fibers influence neurons not only in laminae VII and VIII, but also as far dorsally as lamina V. Fibers that influence neurons in laminae V and VI originate primarily in the caudal areas of the VN. As suggested previously on anatomic grounds, the projection to the dorsal laminae, which is predominantly facilitatory, often converges with afferent input and can therefore modulate its influence on spinal neurons.


1988 ◽  
Vol 59 (4) ◽  
pp. 1204-1219 ◽  
Author(s):  
S. B. McMahon ◽  
P. D. Wall

1. Lamina I cells were recorded in the lumbar dorsal horn of decerebrate rats. Their projecting axons were mainly located in the contralateral dorsolateral funiculus (DLF) in the upper cervical cord. 2. The effect on these cells of short and long trains of stimuli applied to the upper cervical DLF was examined by measuring the ongoing activity of the cells, their response to peripheral stimuli, and the size of their receptive fields. 3. The presence of tonic descending influences from brain stem to spinal cord was investigated by measuring the properties of the lamina I cells before and during block of descending impulses. 4. The results of DLF stimulation and of cord block show that substantial and prolonged excitation affected many cells, whereas some were inhibited for shorter periods of time. 5. The experiments were repeated with stimulation of the DLF caudal to chronic section to eliminate descending fibers. The results suggest that the changes of excitability in intact animals were partly produced by stimulation of descending fibers and partly by the invasion of collaterals activated by the antidromic stimulation of the axons projecting from the lamina I cells. 6. Although long trains of DLF stimuli generally excited lamina I cells, only inhibitions were seen in the deep dorsal horn. Moreover, stimulation rostral to an acute unilateral DLF lesion was without effect on lamina I cells but inhibited deep cells. 7. It is proposed that the lamina I cells might activate brain stem circuits, which in turn influence deep dorsal horn cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Byung-chul Son ◽  
Jin-gyu Choi

Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.


2008 ◽  
Vol 44 ◽  
pp. 11-26 ◽  
Author(s):  
Ralph Beneke ◽  
Dieter Böning

Human performance, defined by mechanical resistance and distance per time, includes human, task and environmental factors, all interrelated. It requires metabolic energy provided by anaerobic and aerobic metabolic energy sources. These sources have specific limitations in the capacity and rate to provide re-phosphorylation energy, which determines individual ratios of aerobic and anaerobic metabolic power and their sustainability. In healthy athletes, limits to provide and utilize metabolic energy are multifactorial, carefully matched and include a safety margin imposed in order to protect the integrity of the human organism under maximal effort. Perception of afferent input associated with effort leads to conscious or unconscious decisions to modulate or terminate performance; however, the underlying mechanisms of cerebral control are not fully understood. The idea to move borders of performance with the help of biochemicals is two millennia old. Biochemical findings resulted in highly effective substances widely used to increase performance in daily life, during preparation for sport events and during competition, but many of them must be considered as doping and therefore illegal. Supplements and food have ergogenic potential; however, numerous concepts are controversially discussed with respect to legality and particularly evidence in terms of usefulness and risks. The effect of evidence-based nutritional strategies on adaptations in terms of gene and protein expression that occur in skeletal muscle during and after exercise training sessions is widely unknown. Biochemical research is essential for better understanding of the basic mechanisms causing fatigue and the regulation of the dynamic adaptation to physical and mental training.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
J Schattschneider ◽  
H.K Kim ◽  
J.M Chung ◽  
R Baron

Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Harminder Singh ◽  
Bartosz Grobelny ◽  
Adam Flanders ◽  
Marc Rosen ◽  
Paul Schiffmacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document