lamina i
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 31)

H-INDEX

53
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wafa A. A. Alsulaiman ◽  
Raphaelle Quillet ◽  
Andrew M. Bell ◽  
Allen C. Dickie ◽  
Erika Polgár ◽  
...  

AbstractA recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50–60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.


2021 ◽  
Author(s):  
Annemarie Dedek ◽  
Jian Xu ◽  
Louis-Étienne Lorenzo ◽  
Antoine G. Godin ◽  
Chaya M. Kandegedara ◽  
...  

The prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn (SDH), direct investigations using rodent and human preclinical pain models have been lacking. Here, we discovered that in the Freund′s Adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and NMDA receptor potentiation within SDH neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator, BDNF, failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B, and pGluN2B) in female rats, resulting in no effect of ex vivo BDNF on synaptic NMDA receptor responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans. As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in SDH neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDA receptor potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.


Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Elisabete C. Fernandes ◽  
José Carlos-Ferreira ◽  
Liliana L. Luz ◽  
Eva Kokai ◽  
Zoltan Meszar ◽  
...  

Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kim I Chisholm ◽  
Laure Lo Re ◽  
Erika Polgár ◽  
Maria Gutierrez-Mecinas ◽  
Andrew J Todd ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (3) ◽  
pp. e2021220118
Author(s):  
Ryoichi Tashima ◽  
Keisuke Koga ◽  
Yu Yoshikawa ◽  
Misuzu Sekine ◽  
Moeka Watanabe ◽  
...  

A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aβ fibers. However, the mechanism by which Aβ fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aβ fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aβ fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aβ fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aβ fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aβ fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.


Sign in / Sign up

Export Citation Format

Share Document