Persistent factor VIII-dependent factor X activation on endothelial cells is independent of von Willebrand factor

2008 ◽  
Vol 19 (3) ◽  
pp. 190-196 ◽  
Author(s):  
Herm Jan M Brinkman ◽  
Jan A van Mourik ◽  
Koen Mertens
1981 ◽  
Author(s):  
K Brodén ◽  
L-O Andersson

In normal plasma Factor VIII activity is associated with a series of high molecular weight glycoprotein complexes also containing von Willebrand Factor related activities. To study the possible binding of various forms of Factor VIII to released platelets, a solution containing Factor VIII was mixed with a dilute suspension of platelets, which were released by addition of collagen. After 10 minutes of incubation the mixture was layered over 1.5 ml of 30% human serum albumin solution in a centrifuge tube and subjected to centrifugation at 7,000xg. Fractions were collected and analyzed for Factor VIII activity and phospholipid-related procoagulant activity. When purified Factor VUI/von Willebrand Factor complex was studied no significant association between the Factor VIII activity and the platelets were found. When purified Factor VUI/von Willebrand Factor complex was activated with 10-3 units/ml of thrombin and then tested, the main part of the Factor VIII activity became associated with the platelets. Even at very low platelet counts this binding was clearly detectable. The binding occurred both in the presence and in the absence of Ca2+. Thus released platelets bind thrombin-activated Factor VIII but not the Factor VUI/von Willebrand Factor complex. It is known that activation of Factor VIII by thrombin causes dissociation of the Factor VIII from the von Willebrand Factor part of the complex. The data obtained indicate that this dissociation is necessary in order to get the Factor VIII to bind to the platelet receptor. It may work as an amplification mechanism where the first traces of Thrombin formed upon initiation of coagulation dissociates Factor VIII from von Willebrand Factor, followed by binding to receptor on released platelets and formation of Factor X activator complex on the surface of the platelets.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24163 ◽  
Author(s):  
Maartje van den Biggelaar ◽  
Eveline A. M. Bouwens ◽  
Jan Voorberg ◽  
Koen Mertens

1981 ◽  
Vol 200 (1) ◽  
pp. 161-167 ◽  
Author(s):  
L O Andersson ◽  
J E Brown

The interaction of Factor VIII-von Willebrand Factor with phospholipid vesicles has been studied by using sucrose-density-gradient ultracentrifugation. When purified Factor VIII-von Willebrand Factor was run alone. Factor VIII activity and Factor VIIIR-Ag sedimented together to the lower half of the tube. Addition of phosphatidylserine/phosphatidylethanolamine vesicles at concentrations above 250 microgram/ml resulted in complete separation of Factor VIII activity and Factor VIIIR-Ag, the former appearing with the phospholipid on the top of the tube and the latter sedimenting as before. This separation was obtained even in the presence of proteinase inhibitors. Activation of Factor VIII-von Willebrand Factor by thrombin resulted in formation of a slow sedimenting component containing essentially all the Factor VIII activity, whereas the Factor VIIIR-Ag sedimented towards the bottom of the tube as before. The thrombin-induced Factor VIII activity was strongly bound to phospholipid vesicles as determined by density-gradient centrifugations at various Factor VIII concentrations and low concentrations of phospholipid. Based on certain assumptions a dissociation constant of 2.5 nM was calculated, a mechanism for the formation in vivo of the Factor X-activator complex is suggested.


1981 ◽  
Author(s):  
J E Brown ◽  
L O Andersson

The interaction of factor VIII/von Willebrand factor with phospholipid vesicles was studied using sucrose density gradient ultracentrifugation. Purified VIII/vWf (Kabi) sediments as a complex in the lower third of a 5-30% sucrose gradient centrifuged for 18 hours at 160,000 g. Addition of sonicated phosphatidylserine-phosphatidylethanolamine vesicles at concentrations above 250 μg/ml results in complete separation of VIII:C from vWf, the former appearing with the phospholipid in the top of the gradient and the latter sedimenting as before. At lower levels of phospholipid, vWf competes for binding of VIII:C. The separation at higher levels of phospholipid is obtained in the presence of DFP and Trasylol, does not require calcium and occurs with plasma as well as purified preparations. Activation (7-10-fold) of purified VUI/vWf by thrombin (10-3 units/ml) results in the formation of a slowly sedimenting component containing essentially all of the VIII:C activity with little or no associated vWf. The thrombin-activated VIII:C is strongly bound to phospholipid vesicles and is more stabile than uncomplexed VIII:C (thrombin-activated). By varying the concentration of thrombin activated VIII:C with a constant (5 μg/ml) concentration of phospholipid, a Scatchard binding plot was obtained and a dissociation constant of 2.5 x 10-9 M estimated (assuming a molecular weight for VIII:C of 90,000) for the thrombin-activated VIII:C-phospholipid complex. These studies suggest that thrombin activated VIII:C binds to exposed phospholipid on released platelets concentrating the factor X activator complex.


1976 ◽  
Vol 35 (01) ◽  
pp. 120-123 ◽  
Author(s):  
R. L Nachman ◽  
E. A Jaffe

SummaryCultured human endothelial cells synthesize and secrete a protein(s) which has factor VIII antigen and von Willebrand factor activity. Subcellular membrane and granule fractions derived from human platelets also contain the factor VIII antigen and von Willebrand factor activity. Circulating platelets constitute a significant reservoir of VIII antigen containing approximately 15 % of the amount present in platelet-poor plasma. Thus normal platelets contain surface bound as well as intracellularly stored von Willebrand factor, a protein synthesized by endothelial cells which is required for normal platelet function.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 764-764
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
Erin L. Kuether ◽  
Robert R. Montgomery

Abstract von Willebrand factor (VWF) is a carrier protein for factor VIII (FVIII) and protects plasma FVIII from protease degradation. Our laboratory has had a longstanding interest in the association of FVIII with VWF both in vitro and in vivo. Our in vitro studies have demonstrated that FVIII stores together with VWF in both endothelial cells and megakaryocytes if FVIII is made in these cells. Furthermore, we demonstrated that FVIII and VWF are both releasable by agonist stimulation. To investigate the association of VWF and FVIII in vivo, we generated two lines of transgenic mice that express FVIII either in endothelial cells or in platelets using either the endothelial cell-specific Tie2 promoter or the platelet-specific αIIb promoter, respectively. When the platelet-specific FVIII (2bF8) transgene is bred into the FVIIInull mouse, FVIII can only be detected in platelets, with a level of 0.76 ± 0.27 mU/108 platelets in heterozygous and 1.53 ± 0.14 mU/108 platelets in homozygous 2bF8 mice. When the endothelial cell-specific FVIII (Tie2F8) transgene is bred into the FVIIInull mouse, homozygous Tie2F8 mice maintained normal plasma FVIII levels (1.15 ± 0.16 U/ml) and 50% levels in heterozygous mice (0.56 ± 0.16 U/ml). Both 2bF8trans and Tie2F8trans phenotypes effectively abrogate the bleeding diathesis in hemophilic mice. When 2bF8 transgene was bred into a FVIII and VWF double knockout background, the level of platelet-FVIII significantly decreased, but this platelet-derived FVIII was still stored in a-granules and still maintained clinical efficacy. In contrast, when the Tie2F8 transgene was bred into the double knockout background, plasma FVIII dropped to undetectable levels. This is in contrast to the situation in VWFnull mice in which normal endogenous murine FVIII is synthesized with about 10% of normal FVIII activity persisting in plasma. This could be due to a difference in survival between human FVIII and murine FVIII. All Tie2F8trans/FVIIInullVWFnull mice (n=15) survived tail clipping even though there is no FVIII:C detected in the plasma. To investigate the effect of murine VWF on the levels of plasma FVIII, plasma from FVIIInull mice was infused into Tie2F8trans/FVIIInullVWFnull mice to restore VWF levels to 25% of normal. As expected, the endothelial cell-derived plasma FVIII was stabilized by the infused VWF and was detected within 1 hour after infusion, with a peak (25% level) at 4 hours. The level of plasma FVIII at 24 hours was still about 20% of normal while the level of remaining VWF was only 5% of normal. These results demonstrate that VWF is important for site-specific FVIII expression. Co-expression with VWF in platelets is important for optimal platelet-specific FVIII expression and endothelial cell-derived plasma FVIII is VWF-dependent.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5947-5956 ◽  
Author(s):  
Eveline A. M. Bouwens ◽  
Marjon J. Mourik ◽  
Maartje van den Biggelaar ◽  
Jeroen C. J. Eikenboom ◽  
Jan Voorberg ◽  
...  

Abstract In endothelial cells, von Willebrand factor (VWF) multimers are packaged into tubules that direct biogenesis of elongated Weibel-Palade bodies (WPBs). WPB release results in unfurling of VWF tubules and assembly into strings that serve to recruit platelets. By confocal microscopy, we have previously observed a rounded morphology of WPBs in blood outgrowth endothelial cells transduced to express factor VIII (FVIII). Using correlative light-electron microscopy and tomography, we now demonstrate that FVIII-containing WPBs have disorganized, short VWF tubules. Whereas normal FVIII and FVIII Y1680F interfered with formation of ultra-large VWF multimers, release of the WPBs resulted in VWF strings of equal length as those from nontransduced blood outgrowth endothelial cells. After release, both WPB-derived FVIII and FVIII Y1680F remained bound to VWF strings, which however had largely lost their ability to recruit platelets. Strings from nontransduced cells, however, were capable of simultaneously recruiting exogenous FVIII and platelets. These findings suggest that the interaction of FVIII with VWF during WPB formation is independent of Y1680, is maintained after WPB release in FVIII-covered VWF strings, and impairs recruitment of platelets. Apparently, intra-cellular and extracellular assembly of FVIII-VWF complex involves distinct mechanisms, which differ with regard to their implications for platelet binding to released VWF strings.


Sign in / Sign up

Export Citation Format

Share Document