Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model

2012 ◽  
Vol 23 (5) ◽  
pp. 419-427 ◽  
Author(s):  
Andreas Arkudas ◽  
Galyna Pryymachuk ◽  
Tobias Hoereth ◽  
Justus P. Beier ◽  
Elias Polykandriotis ◽  
...  
2018 ◽  
Vol 24 (9-10) ◽  
pp. 719-728 ◽  
Author(s):  
Quan Yuan ◽  
Andreas Arkudas ◽  
Raymund E. Horch ◽  
Matthias Hammon ◽  
Oliver Bleiziffer ◽  
...  

2015 ◽  
Vol 113 (06) ◽  
pp. 1312-1322 ◽  
Author(s):  
Sofia Nordling ◽  
Jaan Hong ◽  
Karin Fromell ◽  
Fredrik Edin ◽  
Johan Brännström ◽  
...  

SummaryIschaemia-reperfusion injury (IRI) poses a major challenge in many thrombotic conditions and in whole organ transplantation. Activation of the endothelial cells and shedding of the protective vascular glycocalyx during IRI increase the risk of innate immune activation, cell infiltration and severe thrombus formation, promoting damage to the tissue. Here, we present a novel one-step strategy to protect the vasculature by immobilisation of a unique multi-arm heparin conjugate to the endothelium. Applying a new in vitro blood endothelial cell chamber model, the heparin conjugate was found to bind not only to primary human endothelial cells but also directly to the collagen to which the cells adhered. Incubation of hypoxic endothelial cells with freshly drawn human blood in the blood chambers elicited coagulation activation reflected by thrombin anti-thrombin formation and binding of platelets and neutrophils. Immobilisation of the heparin conjugate to the hypoxic endothelial cells created a protective coating, leading to a significant reduction of the recruitment of blood cells and coagulation activation compared to untreated hypoxic endothelial cells. This novel approach of immobilising multi-arm heparin conjugates on the endothelial cells and collagen of the basement membrane ensures to protect the endothelium against IRI in thrombotic disorders and in transplantation.


2000 ◽  
Vol 85 (1) ◽  
pp. 64-69 ◽  
Author(s):  
L Michel ◽  
M Murrieta-Aguttes ◽  
F Jean-Louis ◽  
D Levy ◽  
L Dubertret

2006 ◽  
Vol 291 (5) ◽  
pp. H2445-H2452 ◽  
Author(s):  
Pedro Cabrales ◽  
Amy G. Tsai

The hamster window chamber model was used to study systemic and microvascular hemodynamic responses to extreme hemodilution with low- and high-viscosity plasma expanders (LVPE and HVPE, respectively) to determine whether plasma viscosity is a factor in homeostasis during extreme anemic conditions. Moderated hemodilution was induced by two isovolemic steps performed with 6% 70-kDa dextran until systemic hematocrit (Hct) was reduced to 18% ( level 2). In a third isovolemic step, hemodilution with LVPE (6% 70-kDa dextran, 2.8 cP) or HVPE (6% 500-kDa dextran, 5.9 cP) reduced Hct to 11%. Systemic parameters, cardiac output (CO), organ flow distribution, microhemodynamics, and functional capillary density, were measured after each exchange dilution. Fluorescent-labeled microspheres were used to measure organ (brain, heart, kidney, liver, lung, and spleen) and window chamber blood flow. Final blood and plasma viscosities after the entire protocol were 2.1 and 1.4 cP, respectively, for LVPE and 2.8 and 2.2 cP, respectively, for HVPE (baseline = 4.2 and 1.2 cP, respectively). HVPE significantly elevated mean arterial pressure and CO compared with LVPE but did not increase vascular resistance. Functional capillary density was significantly higher for HVPE [87% (SD 7) of baseline] than for LVPE [42% (SD 11) of baseline]. Increases in mean arterial blood pressure, CO, and shear stress-mediated factors could be responsible for maintaining organ and microvascular perfusion after exchange with HVPE compared with LVPE. Microhemodynamic data corresponded to microsphere-measured perfusion data in vital organs.


2017 ◽  
Vol 34 (02) ◽  
pp. 130-137
Author(s):  
Ibrahim Fathi ◽  
Ahmed Eltawila ◽  
Ahmad Elsherif ◽  
Yasser Elkerm ◽  
Leila Harhaus ◽  
...  

Background Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization. Methods We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation. Results The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs. Conclusion The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation.


1993 ◽  
Vol 60 (3) ◽  
pp. 1098-1104 ◽  
Author(s):  
J.-E. Karlsson ◽  
L. E. Rosengren ◽  
S. Wang ◽  
N. Danielsen ◽  
K. G. Haglid

Sign in / Sign up

Export Citation Format

Share Document