Usefulness and feasibility of repeated tail artery cannulations in the rat

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kosuke Kumagai ◽  
Terushige Toyooka ◽  
Yohei Otsuka ◽  
Masahiro Horikawa ◽  
Kentaro Yamada ◽  
...  
Keyword(s):  
2020 ◽  
Vol 182 ◽  
pp. 114263
Author(s):  
F. Fusi ◽  
P. Mugnai ◽  
A. Trezza ◽  
O. Spiga ◽  
G. Sgaragli

2007 ◽  
Vol 135 (1-2) ◽  
pp. 130
Author(s):  
James A. Brock ◽  
Diana Tripovic ◽  
Svetlana Pianova ◽  
Elspeth M. McLachlan

1991 ◽  
Vol 22 (2) ◽  
pp. 399-402 ◽  
Author(s):  
Xie-Nan Huang ◽  
Issei Takayanagi ◽  
Ryuichi Kurata ◽  
Tetsuhiro Hisayama

1980 ◽  
Vol 164 (3) ◽  
pp. 252-256 ◽  
Author(s):  
R. C. Webb ◽  
P. M. Vanhoutte ◽  
D. F. Bohr

1995 ◽  
Vol 73 (3) ◽  
pp. 378-382 ◽  
Author(s):  
Yi-Tsau Huang ◽  
Chuang-Ye Hong ◽  
Pi-Chin Yu ◽  
Ming-Fang Lee ◽  
May C. M. Yang ◽  
...  

The purpose of this study was to investigate the vascular contractile and inositol phosphate responses in portal hypertensive rats. Portal hypertension was induced by partial portal vein ligation (PVL) in Sprague–Dawley rats. Sham-operated rats served as controls. Pressures, vasoconstrictor responses, and inositol phosphate responses were determined at 14 days after surgery. The portal venous pressure was significantly higher, while systemic arterial pressure and heart rate were lower, in PVL rats. Dose-dependent contractile responses were observed for both norepinephrine (1 × 10−8 – 3 × 10−6 M) and vasopressin (3 × 10−10 – 3 × 10−8 M) in the tail artery of both groups. The contractile response to norepinephrine was significantly decreased in PVL rats compared with controls at all doses. The contractile response to vasopressin was significantly decreased in PVL rats at higher doses. After myo-[3H]inositol incorporation in tail artery, the levels of 3H-labelled phosphatidylinositols (cpm/mg) were similar between the two groups. Norepinephrine (10−7 – 10−5 M) and vasopressin (10−10 – 10−8 M) dose dependently stimulated the 3H-labelled inositol phosphate production in the tail artery of both PVL and sham-operated rats. However, the response was significantly lower in PVL rats. The results suggested that the attenuation of vascular contractile responses in portal hypertension was reflected in the phosphoinositide messenger system.Key words: portal hypertension, inositol phosphates, phosphoinositide, tail artery, contractile response.


2019 ◽  
Vol 316 (1) ◽  
pp. H89-H105 ◽  
Author(s):  
Somayeh Mojard Kalkhoran ◽  
Sarah Heather Jane Chow ◽  
Jagdeep Singh Walia ◽  
Cynthia Gershome ◽  
Nickolas Saraev ◽  
...  

ATP and norepinephrine (NE) are coreleased from peripheral sympathetic nerve terminals. Whether they are stored in the same vesicles has been debated for decades. Preferential dependence of NE or ATP release on Ca2+ influx through specific voltage-gated Ca2+ channel (Cav2) isoforms suggests that NE and ATP are stored in separate vesicle pools, but simultaneous imaging of NE and ATP containing vesicles within single varicosities has not been reported. We conducted an immunohistochemical study of vesicular monoamine transporter 2 (VMAT2/SLC18A2) and vesicular nucleotide translocase (VNUT/SLC17A9) as markers of vesicles containing NE and ATP in sympathetic nerves of the rat tail artery. A large fraction of varicosities exhibited neighboring, rather than overlapping, VNUT and VMAT2 fluorescent puncta. VMAT2, but not VNUT, colocalized with synaptotagmin 1. Cav2.1, Cav2.2, and Cav2.3 are expressed in nerves in the tunica adventitia. VMAT2 preferentially localized adjacent to Cav2.2 and Cav2.3 rather than Cav2.1. VNUT preferentially localized adjacent to Cav2.3 > Cav2.2 >> Cav2.1. With the use of wire myography, inhibition of field-stimulated vasoconstriction with the Cav2.3 blocker SNX-482 (0.25 µM) mimicked the effects of the P2X inhibitor suramin (100 µM) rather than the α-adrenergic inhibitor phentolamine (10 µM). Variable sensitivity to SNX-482 and suramin between animals closely correlated with Cav2.3 staining. We concluded that a majority of ATP and NE stores localize to separate vesicle pools that use different synaptotagmin isoforms and that localize near different Cav2 isoforms to mediate vesicle release. Cav2.3 appears to play a previously unrecognized role in mediating ATP release in the rat tail artery. NEW & NOTEWORTHY Immunofluorescence imaging of vesicular nucleotide translocase and vesicular monoamine transporter 2 in rat tail arteries revealed that ATP and norepinephrine, classical cotransmitters, localize to well-segregated vesicle pools. Furthermore, vesicular nucleotide translocase and vesicular monoamine transporter 2 exhibit preferential localization with specific Cav2 isoforms. These novel observations address long-standing debates regarding the mechanism(s) of sympathetic neurotransmitter corelease.


2002 ◽  
Vol 90 (7) ◽  
pp. 792-799 ◽  
Author(s):  
Karl Swärd ◽  
Karl Dreja ◽  
Anders Lindqvist ◽  
Erik Persson ◽  
Per Hellstrand

Sign in / Sign up

Export Citation Format

Share Document