Decreased vascular contractile and inositol phosphate responses in portal hypertensive rats

1995 ◽  
Vol 73 (3) ◽  
pp. 378-382 ◽  
Author(s):  
Yi-Tsau Huang ◽  
Chuang-Ye Hong ◽  
Pi-Chin Yu ◽  
Ming-Fang Lee ◽  
May C. M. Yang ◽  
...  

The purpose of this study was to investigate the vascular contractile and inositol phosphate responses in portal hypertensive rats. Portal hypertension was induced by partial portal vein ligation (PVL) in Sprague–Dawley rats. Sham-operated rats served as controls. Pressures, vasoconstrictor responses, and inositol phosphate responses were determined at 14 days after surgery. The portal venous pressure was significantly higher, while systemic arterial pressure and heart rate were lower, in PVL rats. Dose-dependent contractile responses were observed for both norepinephrine (1 × 10−8 – 3 × 10−6 M) and vasopressin (3 × 10−10 – 3 × 10−8 M) in the tail artery of both groups. The contractile response to norepinephrine was significantly decreased in PVL rats compared with controls at all doses. The contractile response to vasopressin was significantly decreased in PVL rats at higher doses. After myo-[3H]inositol incorporation in tail artery, the levels of 3H-labelled phosphatidylinositols (cpm/mg) were similar between the two groups. Norepinephrine (10−7 – 10−5 M) and vasopressin (10−10 – 10−8 M) dose dependently stimulated the 3H-labelled inositol phosphate production in the tail artery of both PVL and sham-operated rats. However, the response was significantly lower in PVL rats. The results suggested that the attenuation of vascular contractile responses in portal hypertension was reflected in the phosphoinositide messenger system.Key words: portal hypertension, inositol phosphates, phosphoinositide, tail artery, contractile response.

1992 ◽  
Vol 83 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Pi-Chin Yu ◽  
Jon-Son Kuo ◽  
Han-Chieh Lin ◽  
May C. M. Yang

1. Effects of endothelin-1 on systemic arterial blood pressure, heart rate and portal venous pressure were compared in normal Sprague-Dawley rats and rats with portal hypertension induced by CCl4 and partial portal vein ligation. 2. Endothelin-1 produced biphasic effects on systemic blood pressure and portal venous pressure in all three groups of rats. However, the magnitude of the changes in blood pressure was less in portal hypertensive rats. 3. The ability of endothelin-1 to increase the portal venous pressure was also significantly diminished in portal hypertensive rats. On the other hand, the initial decrease in portal pressure was augmented in rats with partial portal vein ligation, and disappeared at higher dosage in CCl4-treated rats. 4. In accordance with the pressure recording in vivo, the dose-response vasoconstrictive activity of endothelin-1 was significantly attenuated in the intrahepatic vasculature. 5. The plasma immunoreactive endothelin concentration was significantly higher (5.55 ± 0.81 fmol/ml) in Sprague-Dawley rats than in CCl4-treated rats (2.83 ± 0.56 fmol/ml) and rats with partial portal vein ligation (2.68 ± 0.53 fmol/ml). 6. It was concluded that a lower plasma level of endothelin and a reduced vascular responsiveness may contribute, at least in part, to the hyperdynamics of portal hypertension.


1999 ◽  
Vol 77 (8) ◽  
pp. 618-624 ◽  
Author(s):  
Fang-Chi Chang ◽  
Yi-Tsau Huang ◽  
Han-Chieh Lin ◽  
Chuang-Ye Hong ◽  
Jaung-Geng Lin ◽  
...  

The purpose of this study was to investigate the therapeutic effects of terlipressin (TP) alone or in combination with tetramethylpyrazine (TMP) on anesthetized portal hypertensive rats. Portal hypertension was induced by either partial portal vein ligation (PVL, without cirrhosis) or bile duct ligation (BDL, with cirrhosis) in Sprague-Dawley rats. Each PVL or BDL rat received only one of the two regimens: vehicle for 3 min followed by TP (0.017 mg·kg-1·min-1 for 3 min) or TMP (10 mg·kg-1·min-1 for 3 min) followed by TP. In PVL rats, infusion of vehicle followed by TP induced significant reduction of portal venous pressure (PVP, -15.0 ± 1.0%) and prominent elevation of mean arterial pressure (MAP, 57.3 ± 8.1%) as well as total peripheral resistance (TPR, 113 ± 11%) from baseline, and there was a cardiodepressant response (cardiac index, CI, -26.3 ± 1.1%). Infusion of TMP followed by TP induced significant reduction of PVP (-20.3 ± 0.4%) and CI (-9.9 ± 1.2%) and significant elevation of MAP (31.3 ± 2.5%) and TPR (46.0 ± 4.1%) from baseline. In BDL rats, infusion of vehicle followed by TP also induced significant reduction of PVP (-13.8 ± 1.7%) but an increase in MAP (57.1 ± 2.2%) and TPR (101 ± 6%) from baseline, and there also was a cardiodepressant response (CI, -21.4 ± 2.3%). Infusion of TMP followed by TP induced significant reduction of PVP (-18.9 ± 1.4%) and CI (-11.9 ± 2.1%), but an increase in MAP (36.2 ± 2.5%) and TPR (55.0 ± 5.2%). Compared with vehicle followed by TP, TMP not only significantly enhanced portal hypotensive (PVP reduction) effects of TP but also attenuated the systemic pressor (MAP and TPR elevation) and cardiodepressant (CI reduction) effects of TP in both PVL and BDL rats. Our results suggest that TP, alone or in combination with TMP, induced portal hypotensive effects in two models of portal hypertensive rats. Combination of TP and TMP was beneficial in enhancing portal hypotensive effects of TP and ameliorating the systemic pressor and cardiodepressant effects of TP.Key words: terlipressin, tetramethylpyrazine, cirrhosis, portal hypertension, hemodynamics.


1988 ◽  
Vol 254 (3) ◽  
pp. G322-G328 ◽  
Author(s):  
D. Kravetz ◽  
J. Bosch ◽  
M. T. Arderiu ◽  
M. P. Pizcueta ◽  
R. Casamitjana ◽  
...  

The effects of somatostatin infusion on splanchnic and systemic hemodynamics and plasma glucagon levels were investigated in rats with portal hypertension. Forty-four male Sprague-Dawley rats were studied. Portal hypertension was induced in 26 rats by partial portal vein ligation (PVL). These rats were divided in two experimental groups to receive blindly 1) somatostatin (PVL-SMT, n = 13) at a dose of 25 micrograms/kg body wt during 30 min preceded by a bolus injection of 15 micrograms/kg body wt or 2) placebo (saline) (PVL-P, n = 13) infused at the same rate as in the previous group. The remaining 18 rats were used as normal controls and received somatostatin (n = 9) or saline infusion (n = 9). Regional blood flows and cardiac output were measured using radioactive microspheres. Arterial and portal pressures were also measured. In portal hypertensive rats somatostatin infusion produced significant reductions in the increased portal venous inflow, reductions in portal pressure, and significantly increased portal venous resistance. Reduction of portal venous inflow was due to splanchnic vasoconstriction, evidenced by increased splanchnic arteriolar resistance. No significant differences were observed in systemic hemodynamic parameters between PVL-SMT and PVL-P rats. Plasma glucagon levels were significantly reduced by somatostatin to levels similar to those observed in sham-operated rats. In sham-operated rats, somatostatin also caused significant reduction in portal venous inflow and plasma glucagon concentration, although these changes were of lesser magnitude than in portal hypertensive rats.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 121 (12) ◽  
pp. 545-554 ◽  
Author(s):  
Jing-Yi Lee ◽  
Teh-Ia Huo ◽  
Hui-Chun Huang ◽  
Fa-Yauh Lee ◽  
Han-Chieh Lin ◽  
...  

Gastro-oesophageal variceal haemorrhage is one of the most dreadful complications of portal hypertension and can be controlled with vasoconstrictors. Nevertheless, sympathetic tone abnormality and vascular hyporesponsiveness in portal hypertension may impede the haemostatic effects of vasoconstrictors. Propranolol, a β-blocker binding the G-protein-coupled adrenoceptor, is a portal hypotensive agent. However, whether propranolol influences the collateral vasoresponse is unknown. Portal hypertension was induced by PVL (portal vein ligation) in Sprague–Dawley rats. In an acute study with an in situ perfusion model, the collateral responsiveness to AVP (arginine vasopressin) was evaluated with vehicle, propranolol (10 μmol/l), propranolol plus suramin (100 μmol/l, a Gα inhibitor) or suramin pre-incubation. Gα mRNA expression in the splenorenal shunt, the most prominent intra-abdominal collateral vessel, was measured. In the chronic study, rats received DW (distilled water) or propranolol (10 mg·kg−1 of body weight·day−1) for 9 days. Then the concentration–response relationship of AVP and Gα mRNA expression were assessed. Propranolol pre-incubation elevated the perfusion pressure changes of collaterals in response to AVP, which was inhibited by suramin. The splenorenal shunt Gαq and Gα11 mRNA expression were enhanced by propranolol. The group treated with propranolol plus suramin had a down-regulation of Gα11 as compared with the propranolol group. Chronic propranolol treatment reduced mean arterial pressure, PP (portal pressure) and the perfusion pressure changes of collaterals to AVP. Gαs expression was up-regulated. In conclusion, propranolol pre-incubation enhanced the portal-systemic collateral AVP responsiveness in portal hypertensive rats, which was related to Gαq and Gα11 up-regulation. In contrast, the attenuated AVP responsiveness by chronic propranolol treatment was related to Gαs up-regulation. The Gα signalling pathway may be a therapeutic target to control variceal bleeding and PP in portal hypertension.


1993 ◽  
Vol 71 (7) ◽  
pp. 473-483 ◽  
Author(s):  
Paul V. Nguyen ◽  
Xiao-Ping Yang ◽  
Guo Li ◽  
Li Yuan Deng ◽  
Jean-Pierre Flückiger ◽  
...  

The contractile responses and generation of intracellular second messengers in response to endothelin-1 (ET-1), a potent vasoconstrictor peptide released locally by endothelial cells and involved in the regulation of vascular tone, were investigated in different segments of the vascular tree of adult 18-week-old spontaneously hypertensive rats (SHR) as compared with age-matched Wistar–Kyoto (WKY) rats. Aorta rings of SHR showed lower maximum response to ET-1 in comparison with WKY rats. Rings of the main superior mesenteric artery of SHR and WKY showed similar responses to ET-1. Small mesenteric resistance arteries of SHR, mounted on a wire myograph, developed similar tension to those of WKY rats in response to ET-1. The dose–response of inositol phosphates to ET-1 was significantly blunted in thoracic aorta of SHR compared with WKY rats, whereas it was similar in the mesenteric arterial bed. Baseline 1,2-diacylglycerol content was higher in thoracic aorta of SHR than WKY, while it was similar in the mesenteric arterial bed of the two strains. The response of 1,2-diacylglycerol to ET-1 was blunted in aorta of SHR, whereas no significant differences in diacylglycerol accumulation could be found in mesenteric vessels between SHR and WKY. In small mesenteric arteries, the dose–response to ET-1 of cytosolic free calcium, measured with the fluorescent dye Fura 2-AM, was similar in the two groups of rats. We conclude that in the aorta of 18-week-old SHR there is reduced generation of second messengers (inositol phosphates and diacylglycerol), which underlies its decreased response to ET-1 In mesenteric vessels (both proximal and distal) signal transduction is similar in SHR and WKY, and as a result contractile responses in both species are comparable. The responses to ET-1 of the arterial tree in terms of contractility and second messenger generation may reflect the adaptive processes taking place as a consequence of elevated blood pressure within the arterial wall of different segments of the vasculature of SHR.Key words: inositol phosphate, phospholipids, diacylglycerol, cytosolic calcium, second messengers, conduit and resistance arteries, Wistar–Kyoto rats.


2002 ◽  
Vol 282 (6) ◽  
pp. H2084-H2090 ◽  
Author(s):  
Yasuko Iwakiri ◽  
Ming-Hung Tsai ◽  
Timothy J. McCabe ◽  
Jean-Philippe Gratton ◽  
David Fulton ◽  
...  

Akt, also known as protein kinase B, is a serine/threonine kinase. Akt becomes active when phosphorylated by the activation of receptor tyrosine kinases, G protein-coupled receptors, and mechanical forces such as shear stress. Studies in vitro have shown that Akt can directly phosphorylate endothelial nitric oxide (NO) synthase (eNOS) and activate the enzyme, leading to NO production. The aim of this study was to test the hypothesis that the phosphorylation of eNOS plays a role in the enhanced NO production observed in early portal hypertension. Male Sprague-Dawley rats were subjected to either sham or portal vein ligation (PVL), and mesenteric arterial beds were used for ex vivo perfusion studies. Mesenteric arterial beds from PVL rats had an approximately 60–70% decrease in response to methoxamine (an α1-agonist and vasoconstrictor) compared with the sham group ( P < 0.01). When N G-monomethyl-l-arginine (a NOS inhibitor) was added to the perfusion, the difference in perfusion pressure between the two groups was abolished, suggesting that enhanced NO production in the PVL group blunted the response to the vasoconstrictor. The reduced responsiveness in PVL was not due to changes in eNOS expression but was due to an increase in enzyme-specific activity, suggesting posttranslational modification of eNOS. The phosphorylation of eNOS at Ser1176 was significantly increased by twofold ( P < 0.05) in the PVL group. Furthermore, PVL significantly increased Akt phosphorylation (an active form of Akt) by threefold ( P< 0.05). When vessels were treated with wortmannin (10 nM) to block the phosphatidylinositol-3-OH-kinase/Akt pathway, NO-induced vasodilatation was significantly reduced. These results suggest that the phosphorylation of eNOS by Akt activates the enzyme and may be the first step leading to an initial increase in NO production in portal hypertension.


1990 ◽  
Vol 258 (1) ◽  
pp. H173-H178 ◽  
Author(s):  
M. B. Turla ◽  
R. C. Webb

Recent studies suggest that serotonergic receptor activation is coupled to phospholipase C-mediated phosphoinositide hydrolysis, which results in the release of intracellular second messengers. The purpose of this study was to determine whether altered phosphoinositide metabolism is the basis for augmented vascular responsiveness to serotonin in genetic hypertension. Thoracic aortic segments isolated from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto normotensive rats (WKY) were labeled with myo-[3H]inositol and stimulated with serotonin in the presence of LiCl. Accumulation of [3H]inositol phosphates was then quantitated by column chromatography. Basal inositol phosphate accumulation and basal incorporation of myo-[3H]inositol into aortic cell membranes from SHRSP was not significantly different from WKY values. At 2.6 x 10(-7) to 2.6 x 10(-4) M serotonin, phosphoinositide metabolism was significantly augmented in aortae from SHRSP compared with WKY. Depolarization (100 mM KCl) did not increase phosphoinositide hydrolysis above basal levels in SHRSP or WKY. 2-Nitro-4-carboxyphenyl-N,N-diphenyl carbamate (NCDC), an inhibitor of phospholipase C, prevented the serotonin-induced phosphoinositide metabolism. NCDC also partially inhibited phasic contractions (responses in calcium-free solution) to serotonin in aortas from SHRSP and WKY. In conclusion, abnormal phosphoinositide metabolism may be one mechanism responsible for the characteristic increase in vascular reactivity to serotonin in hypertension.


1989 ◽  
Vol 257 (1) ◽  
pp. G52-G57 ◽  
Author(s):  
J. G. Geraghty ◽  
W. J. Angerson ◽  
D. C. Carter

The relationship between portal venous pressure and the degree of portasystemic shunting was studied in portal vein-ligated and cirrhotic rats anesthetized with halothane. One day after partial portal vein ligation there was a strong positive correlation (r = 0.80, n = 7) between portal pressure and shunting of mesenteric venous blood as measured by injection of radioactive microspheres. The relationship subsequently underwent rapid change but stabilized by 14 days postligation, when higher levels of shunting were again associated with higher portal pressures up to a limit of approximately 70% shunting, above which pressures did not increase further. This relationship was well described by a quadratic function (r = 0.75, n = 17). In cirrhotic rats there was no relationship between portal pressure and shunting (r = -0.01, n = 10). The results suggest that in the prehepatic model there is little inherent variability in capacity to develop shunts, which open to a degree directly related to portal pressure, but that this relationship may be altered in cirrhotic portal hypertension.


Gut ◽  
1998 ◽  
Vol 42 (2) ◽  
pp. 276-282 ◽  
Author(s):  
X Li ◽  
I S Benjamin ◽  
B Alexander

Background—Portal hypertension is associated with gross haemodynamic disturbances characterised by high cardiac output, low peripheral vascular resistance, increased splanchnic blood flow, and portal systemic shunting.Aims—To study the relationship between intrahepatic portal systemic shunts and microsphere induced portal hypertension in the rat liver.Methods—Different sized microspheres were sequentially injected into the portal vein of male Wistar rats.Results—Steady state portal venous pressure was increased by 102.2 (35.6)% (14.9 (3.6) mm Hg) and 272.3 (78.0)% (24.0 (2.2) mm Hg) above the basal pressure following sequential injections of 15 and 80 μm diameter microspheres, respectively. Sequential injection of 15, 40, and 80 μm diameter microspheres in either ascending or descending order of size did not generate further increases in portal venous pressure. A single injection of 1.8 × 105 80 μm microspheres consistently produced a steady state portal venous pressure of 19.0 (1.3) mm Hg but did not approach the much higher value of 36.6 (43.2) mm Hg measured during clamping of the portal vein. These data indicate that the opening of patent intrahepatic shunts was responsible for the reduced pressures observed during microsphere injections and further evidence for this was provided by the location of microspheres in the pulmonary vascular bed. The elevation in portal venous pressure achieved by microsphere injections was not significantly different to that produced in rats subjected to partial portal vein ligation (20.7 (0.5) mm Hg, p>0.05). Wedged hepatic venous pressure decreased from 6.7 (0.7) to 3.0 (0.6) mm Hg following injection of 80 μm microspheres, suggesting a decrease in total hepatic blood flow. Conversely, injection of 15 μm microspheres induced an increase in wedged hepatic venous pressure from 7.0 (1.0) mm Hg to 12.4 (1.8) mm Hg, indicating a localised redistribution of blood flow at the presinusoidal level of the portal venous vascular network and increased intrahepatic shunt flow.Conclusion—It is suggested that there may be a protective pathophysiological role for these shunts when the liver is subjected to changes which induce acute portal hypertension.


2002 ◽  
Vol 283 (5) ◽  
pp. H2062-H2073 ◽  
Author(s):  
Clifford T. Fulton ◽  
John N. Stallone

The effects of constrictor prostanoid (CP) pathway inhibitors on vascular reactivity to vasopressin (VP) and phenylephrine (PE) were examined in thoracic aortas of male, female, and ovariectomized (OVX) female Sprague-Dawley rats. Maximal contractile response of control (Cont) aortas to VP was markedly higher in females (3,885 ± 332 mg/mg ring wt) than in males (810 ± 148 mg). Indomethacin (Indo; 10 μM) attenuated maximal response to VP in females (3,043 ± 277 mg) but not in males. SQ-29,548 (SQ; 1 μM) attenuated maximal response to VP in females (3,042 ± 290 mg) to a similar extent as Indo. Dazoxiben (Daz; 10 μM) alone had no effect, but Daz + SQ attenuated maximal contractile response to VP to a similar extent as SQ alone. Removal of the endothelium in female aortas attenuated contractile responses to VP in Cont aortas. OVX attenuated maximal contractile response to VP in Cont aortas (2,093 ± 329 mg) and abolished the attenuating effects of Indo. Indo, SQ, and Daz exerted identical effects on contractile responses of male, female, and OVX female aortas to PE. These findings establish the following in the rat aorta: 1) CP, probably thromboxane and/or endoperoxide, is responsible for ∼25–30% of contractile responses of females, but not males, to VP and PE; 2) CP production by the female aorta is primarily endothelial in origin; and 3) ovarian steroids modulate production and/or actions of CP in female aortas.


Sign in / Sign up

Export Citation Format

Share Document