scholarly journals Preliminary study of time maximum intensity projection computed tomography imaging for the detection of early ischemic change in patient with acute ischemic stroke

Medicine ◽  
2018 ◽  
Vol 97 (9) ◽  
pp. e9906 ◽  
Author(s):  
Kazuhiro Murayama ◽  
Shigetaka Suzuki ◽  
Ryo Matsukiyo ◽  
Akinori Takenaka ◽  
Motoharu Hayakawa ◽  
...  
Stroke ◽  
2021 ◽  
Author(s):  
Manal Nicolas-Jilwan ◽  
Max Wintermark

Recent advancements in computed tomography technology, including improved brain coverage and automated processing of the perfusion data, have reinforced the use of perfusion computed tomography imaging in the routine evaluation of patients with acute ischemic stroke. The DAWN (Diffusion Weighted Imaging or Computerized Tomography Perfusion Assessment With Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention) and DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3) trials have established the benefit of endovascular thrombectomy in patients with acute ischemic stroke with anterior circulation large vessel occlusion up to 24 hours of last seen normal, using perfusion imaging-based patient selection. The compelling data has prompted stroke centers to increasingly introduce automated perfusion computed tomography imaging in the routine evaluation of patients with acute ischemic stroke. We present a comprehensive overview of the acquisition and interpretation of automated perfusion imaging in patients with acute ischemic stroke with a special emphasis on the interpretation pearls, pitfalls, and stroke mimicking conditions.


2020 ◽  
Vol 5 (4) ◽  
pp. 432-440
Author(s):  
Frans Kauw ◽  
Fasco van Ommen ◽  
Edwin Bennink ◽  
Maarten J Cramer ◽  
L Jaap Kappelle ◽  
...  

Background Computed tomography is the most frequently used imaging modality in acute stroke imaging protocols. Detection of small volume infarcts in the brain and cardioembolic sources of stroke is difficult with current computed tomography protocols. Furthermore, the role of computed tomography findings to predict recurrent ischemic stroke is unclear. With ENCLOSE, we aim to improve (1) the detection of small volume infarcts with thin slice computed tomography perfusion (CTP) images and thromboembolic source with cardiac computed tomography techniques in the acute stage of ischemic stroke and (2) prediction of recurrent ischemic stroke with computed tomography-derived predictors. Methods/design: ENCLOSE is a prospective multicenter observational cohort study, which will be conducted in three Dutch stroke centers (ClinicalTrials.gov Identifier: NCT04019483). Patients (≥18 years) with suspected acute ischemic stroke who undergo computed tomography imaging within 9 h after symptom onset are eligible. Computed tomography imaging includes non-contrast CT, CTP, and computed tomography angiography (CTA) from base of the heart to the top of the brain. Dual-energy CT data will be acquired when possible, and thin-slice CTP reconstructions will be obtained in addition to standard 5 mm CTP data. CTP data will be processed with commercially available software and locally developed model-based methods. The post-processed thin-slice CTP images will be compared to the standard CTP images and to magnetic resonance diffusion-weighted imaging performed within 48 h after admission. Detection of cardioembolic sources of stroke will be evaluated on the CTA images. Recurrence will be evaluated 90 days and two years after the index event. The added value of imaging findings to prognostic models for recurrent ischemic stroke will be evaluated. Conclusion The aim of ENCLOSE is to improve early detection of small volume stroke and thromboembolic sources and to improve prediction of recurrence in patients with acute ischemic stroke.


2019 ◽  
Vol 15 (5) ◽  
pp. 528-534
Author(s):  
Hulin Kuang ◽  
Wu Qiu ◽  
Mohamed Najm ◽  
Dar Dowlatshahi ◽  
Robert Mikulik ◽  
...  

Background The Alberta Stroke Program Early CT Score (ASPECTS) is a systematic method of assessing the extent of early ischemic change on non-contrast computed tomography in patients with acute ischemic stroke. Our objective was to validate an automated ASPECTS scoring method we recently developed on a large data set. Materials and methods We retrospectively collected 602 acute ischemic stroke patients’ non-contrast computed tomography scans. Expert ASPECTS readings on non-contrast computed tomography were compared to automated ASPECTS. Statistical analyses on the total ASPECTS, region level ASPECTS, and dichotomized ASPECTS (≤4 vs. >4) score were conducted. Results In total, 602 scans were evaluated and 6020 (602 × 10) ASPECTS regions were scored. Median time from stroke onset to computed tomography was 114 min (interquartile range: 73–183 min). Total ASPECTS for the 602 patients generated by the automated method agreed well with expert readings (intraclass correlation coefficient): 0.65 (95% confidence interval (CI): 0.60–0.69). Region level analysis showed that the automated method yielded accuracy of 81.25%, sensitivity of 61.13% (95% CI: 58.4%–63.8%), specificity of 86.56% (95% CI: 85.6%–87.5%), and area under curve of 0.74 (95% CI: 0.73–0.75). For dichotomized ASPECTS (≤4 vs. >4), the automated method demonstrated sensitivity 97.21% (95% CI: 95.4%–98.4%), specificity 57.81% (95% CI: 44.8%–70.1%), accuracy 93.02%, and area under the curve of 0.78 (95% CI: 0.74–0.81). For each individual region (M1–6, lentiform, insula, and caudate), the automated method demonstrated acceptable performance. Conclusion The automated system we developed approached the stroke expert in performance when scoring ASPECTS on non-contrast computed tomography scans of acute ischemic stroke patients.


Author(s):  
Houssam El-Hariri ◽  
Luis A. Souto Maior Neto ◽  
Petra Cimflova ◽  
Fouzi Bala ◽  
Rotem Golan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document