material decomposition
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 139)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Fuminari Tatsugami ◽  
Toru Higaki ◽  
Yuko Nakamura ◽  
Yukiko Honda ◽  
Kazuo Awai

AbstractDual-energy CT, the object is scanned at two different energies, makes it possible to identify the characteristics of materials that cannot be evaluated on conventional single-energy CT images. This imaging method can be used to perform material decomposition based on differences in the material-attenuation coefficients at different energies. Dual-energy analyses can be classified as image data-based- and raw data-based analysis. The beam-hardening effect is lower with raw data-based analysis, resulting in more accurate dual-energy analysis. On virtual monochromatic images, the iodine contrast increases as the energy level decreases; this improves visualization of contrast-enhanced lesions. Also, the application of material decomposition, such as iodine- and edema images, increases the detectability of lesions due to diseases encountered in daily clinical practice. In this review, the minimal essentials of dual-energy CT scanning are presented and its usefulness in daily clinical practice is discussed.


2021 ◽  
Author(s):  
Ting Su ◽  
Xindong Sun ◽  
Jiecheng Yang ◽  
Donghua Mi ◽  
Yikun Zhang ◽  
...  

2021 ◽  
Author(s):  
Angela Cuadros ◽  
Carlos Restrepo ◽  
Gonzalo Arce ◽  
Peter Noël

Author(s):  
Satu Irene Inkinen ◽  
Mikael Asko Kaarlo Juntunen ◽  
Juuso Heikki Jalmari Ketola ◽  
Kristiina Korhonen ◽  
Pasi Sepponen ◽  
...  

Abstract In interior cardiac computed tomography (CT) imaging, the x-ray beam is collimated to a limited field-of-view covering the heart volume, which decreases the radiation exposure to surrounding tissues. Spectral CT enables the creation of virtual monochromatic images (VMIs) through a computational material decomposition process. This study investigates the utility of VMIs for beam hardening (BH) reduction in interior cardiac CT, and further, the suitability of VMIs for coronary artery calcium (CAC) scoring and volume assessment is studied using spectral photon counting detector CT (PCD-CT). Ex vivo coronary artery samples (N=18) were inserted in an epoxy rod phantom. The rod was scanned in the conventional CT geometry, and subsequently, the rod was positioned in a torso phantom and re-measured in the interior PCD-CT geometry. The total energy (TE) 10-100 keV reconstructions from PCD-CT were used as a reference. The low energy 10-60 keV and high energy 60-100 keV data were used to perform projection domain material decomposition to polymethyl methacrylate and calcium hydroxylapatite basis. The truncated basis-material sinograms were extended using the adaptive detruncation method. VMIs from 30-180 keV range were computed from the detruncated virtual monochromatic sinograms using filtered back projection. Detrending was applied as a post-processing method prior to CAC scoring. The results showed that BH artefacts from the exterior structures can be suppressed with high (≥100 keV) VMIs. With appropriate selection of the monoenergy (46 keV), the underestimation trend of CAC scores and volumes shown in Bland-Altman (BA) plots for TE interior PCD-CT was mitigated, as the BA slope values were -0.02 for the 46 keV VMI compared to -0.21 the conventional TE image. To conclude, spectral PCD-CT imaging using VMIs could be applied to reduce BH artefacts interior CT geometry, and further, optimal selection of VMI may improve the accuracy of CAC scoring assessment in interior PCD-CT.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7030
Author(s):  
Eva Matoušková ◽  
Karel Pavelka ◽  
Saleem Ibrahim

Historic object analysis and the knowledge of composition play an important role in restoration processes. Based on this information, restoration works are conducted. This paper introduces a non-invasive technique of plaster and mortar material decomposition using reflectance spectroscopy. For this purpose, a NIRQuest512-2,5 from Ocean Optics®/Ocean Insight®, is used to create a unique spectral library consisting of various materials. They were carefully selected to include those that were and still are commonly used for a plaster and mortar production. Each material of the spectral library was mapped in detail, verified using scanning electronic microscope (SEM) data, and the results were compared to a previously determined spectral signature. The new spectral library was then tested on 11 unknown plaster and mortar samples and verified using a scanning electronic microscope. It was found that reflectance spectroscopy provides a powerful tool for plaster and mortar material decomposition, although at the moment it cannot fully replace invasive techniques like chemical analyses or other invasive techniques. It provides relevant information that can be used for restoration works.


Author(s):  
Jessica Miller ◽  
Lianna DiMaso ◽  
Jessie Huang‐Vredevoogd ◽  
Jainil Shah ◽  
Michael Lawless

2021 ◽  
Vol 2103 (1) ◽  
pp. 012117
Author(s):  
V V Kuznetsov ◽  
P P Moskvin ◽  
S I Skurativskyi

Abstract The Cahn-Hilliard concepts are generalized and used to the description of the spinodal decomposition of A3B5 quaternary semiconductor solid solutions, when the mixing of components occurs simultaneously in the metallic and metalloid sublattices of the sphalerite structure. The resulting system of differential equations for material decomposition was used to describe the effect of composition modulation observed in the synthesis of GaxIn1-xPyAs1-y - InP heterostructures. Numerical simulation of the spinodal decomposition of the GaxIm-xPyAsuy solid solution is carried out. The intervals of the thermodynamic parameters of the technological process of the synthesis of structures, in which the effect of modulation of the composition should be manifested, are found.


Author(s):  
Leon D. Gruenewald ◽  
Vitali Koch ◽  
Simon S. Martin ◽  
Ibrahim Yel ◽  
Katrin Eichler ◽  
...  

Abstract Objectives To evaluate the predictive value of volumetric bone mineral density (BMD) assessment of the lumbar spine derived from phantomless dual-energy CT (DECT)-based volumetric material decomposition as an indicator for the 2-year occurrence risk of osteoporosis-associated fractures. Methods L1 of 92 patients (46 men, 46 women; mean age, 64 years, range, 19–103 years) who had undergone third-generation dual-source DECT between 01/2016 and 12/2018 was retrospectively analyzed. For phantomless BMD assessment, dedicated DECT postprocessing software using material decomposition was applied. Digital files of all patients were sighted for 2 years following DECT to obtain the incidence of osteoporotic fractures. Receiver operating characteristic (ROC) analysis was used to calculate cut-off values and logistic regression models were used to determine associations of BMD, sex, and age with the occurrence of osteoporotic fractures. Results A DECT-derived BMD cut-off of 93.70 mg/cm3 yielded 85.45% sensitivity and 89.19% specificity for the prediction to sustain one or more osteoporosis-associated fractures within 2 years after BMD measurement. DECT-derived BMD was significantly associated with the occurrence of new fractures (odds ratio of 0.8710, 95% CI, 0.091–0.9375, p < .001), indicating a protective effect of increased DECT-derived BMD values. Overall AUC was 0.9373 (CI, 0.867–0.977, p < .001) for the differentiation of patients who sustained osteoporosis-associated fractures within 2 years of BMD assessment. Conclusions Retrospective DECT-based volumetric BMD assessment can accurately predict the 2-year risk to sustain an osteoporosis-associated fracture in at-risk patients without requiring a calibration phantom. Lower DECT-based BMD values are strongly associated with an increased risk to sustain fragility fractures. Key Points •Dual-energy CT–derived assessment of bone mineral density can identify patients at risk to sustain osteoporosis-associated fractures with a sensitivity of 85.45% and a specificity of 89.19%. •The DECT-derived BMD threshold for identification of at-risk patients lies above the American College of Radiology (ACR) QCT guidelines for the identification of osteoporosis (93.70 mg/cm3 vs 80 mg/cm3).


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Vitali Koch ◽  
Nils Große Hokamp ◽  
Moritz H. Albrecht ◽  
Leon D. Gruenewald ◽  
Ibrahim Yel ◽  
...  

Abstract Background Dual-source dual-energy computed tomography (DECT) offers the potential for opportunistic osteoporosis screening by enabling phantomless bone mineral density (BMD) quantification. This study sought to assess the accuracy and precision of volumetric BMD measurement using dual-source DECT in comparison to quantitative CT (QCT). Methods A validated spine phantom consisting of three lumbar vertebra equivalents with 50 (L1), 100 (L2), and 200 mg/cm3 (L3) calcium hydroxyapatite (HA) concentrations was scanned employing third-generation dual-source DECT and QCT. While BMD assessment based on QCT required an additional standardised bone density calibration phantom, the DECT technique operated by using a dedicated postprocessing software based on material decomposition without requiring calibration phantoms. Accuracy and precision of both modalities were compared by calculating measurement errors. In addition, correlation and agreement analyses were performed using Pearson correlation, linear regression, and Bland-Altman plots. Results DECT-derived BMD values differed significantly from those obtained by QCT (p < 0.001) and were found to be closer to true HA concentrations. Relative measurement errors were significantly smaller for DECT in comparison to QCT (L1, 0.94% versus 9.68%; L2, 0.28% versus 5.74%; L3, 0.24% versus 3.67%, respectively). DECT demonstrated better BMD measurement repeatability compared to QCT (coefficient of variance < 4.29% for DECT, < 6.74% for QCT). Both methods correlated well to each other (r = 0.9993; 95% confidence interval 0.9984–0.9997; p < 0.001) and revealed substantial agreement in Bland-Altman plots. Conclusions Phantomless dual-source DECT-based BMD assessment of lumbar vertebra equivalents using material decomposition showed higher diagnostic accuracy compared to QCT.


Sign in / Sign up

Export Citation Format

Share Document