scholarly journals A novel mutation in the ubiquinol-cytochrome c reductase synthesis-like gene associated with complex III deficiency and Björnstad syndrome

Medicine ◽  
2020 ◽  
Vol 99 (44) ◽  
pp. e23026
Author(s):  
Xuncan Liu ◽  
Yanfeng Zhang ◽  
Jianmin Liang ◽  
Si Yang ◽  
Chen Chen
1981 ◽  
Vol 256 (21) ◽  
pp. 11132-11136 ◽  
Author(s):  
H. Gutweniger ◽  
R. Bisson ◽  
C. Montecucco

1984 ◽  
Vol 217 (2) ◽  
pp. 551-560 ◽  
Author(s):  
R J Froud ◽  
C I Ragan

Ubiquinol oxidase has been reconstituted from ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase (Complex IV). The steady-state level of reduction of cytochrome c by ubiquinol-2 varies with the molar ratios of the complexes and with the presence of antimycin in a way that can be quantitatively accounted for by a model in which cytochrome c acts as a freely diffusible pool on the membrane. This model was based on that of Kröger & Klingenberg [(1973) Eur. J. Biochem. 34, 358-368] for ubiquinone-pool behaviour. Further confirmation of the pool model was provided by analysis of ubiquinol oxidase activity as a function of the molar ratio of the complexes and prediction of the degree of inhibition by antimycin.


2007 ◽  
Vol 85 (10) ◽  
pp. 986-996 ◽  
Author(s):  
Hung Huynh ◽  
Nicolas Servant ◽  
Lorraine E. Chalifour

Women and men do not respond identically to cardiac insults; premenopausal women are somewhat protected from cardiovascular disease. Our objective was to isolate and characterize hormone-responsive genes in the heart. Differential display identified an estrogen-inducible fragment that was found to encode the ubiquinol–cytochrome-c reductase (UCCR) 7.2 kDa protein of the mitochondrial respiratory complex III. We found UCCR7.2 mRNA to be highly expressed in the heart, and this expression increased in hearts of 4-, 10-, and 28-week-old spontaneously hypertensive rats (SHR) compared with normotensive Wistar–Kyoto rats. Oral hydralazine treatment to reduce hypertension reduced SHR UCCR7.2 expression. Cardiac UCCR7.2 mRNA expression was also increased significantly after a 5/6 nephrectomy compared with mock surgery. Cardiac expression after ovariectomy was 50% that of intact rats. Supplementation of ovariectomized rats with estrogen had no effect, whereas progesterone increased cardiac expression, although not to intact levels. No change in cardiac UCCR7.2 expression was found when intact rats were treated with either tamoxifen or ICI 182780. Thus, UCCR7.2 expression is reduced in the absence of ovarian hormones, but is not directly regulated by estrogen in the heart. We conclude that UCCR7.2 is a steroid hormone-responsive gene in the heart, with expression increased in cardiac hypertrophy and in response to hypertension.


1999 ◽  
Vol 104 (6) ◽  
pp. 460-466 ◽  
Author(s):  
Isabelle Valnot ◽  
Johanna Kassis ◽  
Dominique Chretien ◽  
Pascale de Lonlay ◽  
Béatrice Parfait ◽  
...  

1994 ◽  
Vol 77 (4) ◽  
pp. 1941-1952 ◽  
Author(s):  
D. M. Robinson ◽  
R. W. Ogilvie ◽  
P. C. Tullson ◽  
R. L. Terjung

The importance of the training-induced increase in mitochondrial capacity in realizing the increase in maximal O2 consumption (VO2max) of trained muscle was evaluated using an isolated perfused rat hindlimb preparation at a high blood flow (approximately 80 ml.min-1.100 g-1) during tetanic contractions. Rats trained for 8-–12 wk by treadmill running exhibited an approximately 25% increase in muscle VO2max (5.62 +/- 0.31 to 7.06 +/- 0.64 mumol.min-1.g-1), an increase in mitochondrial enzyme activity (approximately 70% for cytochrome oxidase and approximately 55% for NADH cytochrome-c reductase), and an increase in tissue capillarity (14%) that is expected to increase the O2 exchange capacity of the tissue. Muscle VO2max of sedentary (n = 34) and trained (n = 30) animals was determined, and electron transport capacity was acutely managed with myxothiazol, a tight-binding inhibitor of complex III. Inhibition of complex III was similar among 1) the low- and high-oxidative fibers and 2) the superficial and deep mitochondrial populations within muscle. Inhibition of NADH cytochrome-c reductase activity resulted in reductions in muscle VO2max with similar dose responses (mean effective dose of approximately 0.2 microM) of myxothiazol added to the perfusion medium. The extraction of O2 by the contracting muscle decreased as VO2max declined. The increase in muscle VO2max observed in the muscle of trained animals was eliminated when its electron transport capacity was reduced to that observed in normal sedentary rat muscle. Thus, the exercise-induced adaptation of an increased muscle mitochondrial content appears to be essential for trained muscle to exhibit its increased O2 flux capacity. The results of the present experiment illustrate the importance of mitochondrial adaptations in muscle remodeled by exercise training.


Sign in / Sign up

Export Citation Format

Share Document