Costs associated with incorporation of network approaches into STD program activities

2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Austin M. Williams ◽  
Samuel T. Eppink ◽  
Jalila N. Guy ◽  
Arlene C. Seña ◽  
Andrés A. Berruti
Keyword(s):  
2017 ◽  
Vol 23 (32) ◽  
pp. 4773-4793 ◽  
Author(s):  
Nivedita Singh ◽  
Sherry Freiesleben ◽  
Olaf Wolkenhauer ◽  
Yogeshwer Shukla ◽  
Shailendra K. Gupta

The identification and validation of novel drug–target combinations are key steps in the drug discovery processes. Cancer is a complex disease that involves several genetic and environmental factors. High-throughput omics technologies are now widely available, however the integration of multi-omics data to identify viable anticancer drug-target combinations, that allow for a better clinical outcome when considering the efficacy-toxicity spectrum, is challenging. This review article provides an overview of systems approaches which help to integrate a broad spectrum of technologies and data. We focus on network approaches and investigate anticancer mechanism and biological targets of resveratrol using reverse pharmacophore mapping as an in-depth case study. The results of this case study demonstrate the use of systems approaches for a better understanding of the behavior of small molecule inhibitors in receptor binding sites. The presented network analysis approach helps in formulating hypotheses and provides mechanistic insights of resveratrol in neoplastic transformations.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1647
Author(s):  
Anna Kaczmarek ◽  
Małgorzata Muzolf-Panek

The aim of the study was to develop predictive models of thiol group (SH) level changes in minced raw and heat-treated chicken meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary, and thyme) during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20 °C). SH changes were measured spectrophotometrically using Ellman’s reagent. Samples stored at 12 °C were used as the external validation dataset. SH content decreased with storage time and temperature. The dependence of SH changes on temperature was adequately modeled by the Arrhenius equation with average high R2 coefficients for raw meat (R2 = 0.951) and heat-treated meat (R2 = 0.968). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models of thiol group decay during meat storage. The obtained results demonstrate that both kinetic Arrhenius (R2 = 0.853 and 0.872 for raw and cooked meat, respectively) and ANN (R2 = 0.803) models can predict thiol group changes in raw and cooked ground chicken meat during storage.


Cell Systems ◽  
2021 ◽  
Author(s):  
Samuel Katz ◽  
Jian Song ◽  
Kyle P. Webb ◽  
Nicolas W. Lounsbury ◽  
Clare E. Bryant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document