Exploring the conformational dynamics and flexibility of intrinsically disordered HIV-1 Nef protein using molecular dynamic network approaches

3 Biotech ◽  
2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Anil Bhattarai ◽  
Isaac Arnold Emerson
2017 ◽  
Vol 114 (46) ◽  
pp. E9855-E9862 ◽  
Author(s):  
Lalit Deshmukh ◽  
Vitali Tugarinov ◽  
John M. Louis ◽  
G. Marius Clore

The conversion of immature noninfectious HIV-1 particles to infectious virions is dependent upon the sequential cleavage of the precursor group-specific antigen (Gag) polyprotein by HIV-1 protease. The precise mechanism whereby protease recognizes distinct Gag cleavage sites, located in the intrinsically disordered linkers connecting the globular domains of Gag, remains unclear. Here, we probe the dynamics of the interaction of large fragments of Gag and various variants of protease (including a drug resistant construct) using Carr−Purcell−Meiboom−Gill relaxation dispersion and chemical exchange saturation transfer NMR experiments. We show that the conformational dynamics within the flaps of HIV-1 protease that form the lid over the catalytic cleft play a significant role in substrate specificity and ordered Gag processing. Rapid interconversion between closed and open protease flap conformations facilitates the formation of a transient, sparsely populated productive complex between protease and Gag substrates. Flap closure traps the Gag cleavage sites within the catalytic cleft of protease. Modulation of flap opening through protease−Gag interactions fine-tunes the lifetime of the productive complex and hence the likelihood of Gag proteolysis. A productive complex can also be formed in the presence of a noncognate substrate but is short-lived owing to lack of optimal complementarity between the active site cleft of protease and the substrate, resulting in rapid flap opening and substrate release, thereby allowing protease to differentiate between cognate and noncognate substrates.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Rajkamal Balu ◽  
Robert Knott ◽  
Christopher M. Elvin ◽  
Anita J. Hill ◽  
Namita R. Choudhury ◽  
...  

Herein we report the first example of a facile biomineralization process to produce ultra-small-sized highly fluorescent aqueous dispersions of platinum noble metal quantum clusters (Pt-NMQCs) using a multi-stimulus responsive, biomimetic intrinsically disordered protein (IDP), Rec1-resilin. We demonstrate that Rec1-resilin acts concurrently as the host, reducing agent, and stabilizer of the blue-green fluorescent Pt-NMQCs once they are being formed. The photophysical properties, quantum yield, and fluorescence lifetime measurements of the synthesized Pt-NMQCs were examined using UV-Vis and fluorescence spectroscopy. The oxidation state of the Pt-NMQCs was quantitatively analyzed using X-ray photoelectron spectroscopy. Both a small angle X-ray scattering technique and a modeling approach have been attempted to present a detailed understanding of the structure and conformational dynamics of Rec1-resilin as an IDP during the formation of the Pt-NMQCs. It has been demonstrated that the green fluorescent Pt-NMQCs exhibit a high quantum yield of ~7.0% and a lifetime of ~9.5 ns in aqueous media. The change in photoluminescence properties due to the inter-dot interactions between proximal dots and aggregation of the Pt-NMQCs by evaporation was also measured spectroscopically and discussed.


2018 ◽  
Vol 9 ◽  
Author(s):  
Sudeb C. Dalai ◽  
Dennis Maletich Junqueira ◽  
Eduan Wilkinson ◽  
Renee Mehra ◽  
Sergei L. Kosakovsky Pond ◽  
...  

2021 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Ciro Cecconi

Abstract Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand–receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics – from protein synthesis to physiological function – as well as emerging future issues that are beginning to be addressed with novel approaches.


2020 ◽  
Vol 22 (10) ◽  
pp. 5548-5560
Author(s):  
Yi Li ◽  
Lei Deng ◽  
Jing Liang ◽  
Guang-Heng Dong ◽  
Yuan-Ling Xia ◽  
...  

Large changes in dynamics and thermodynamics of gp120 upon CD4 binding account for the functional and immunological properties of HIV/gp120.


2011 ◽  
Vol 286 (34) ◽  
pp. 29575-29583 ◽  
Author(s):  
Anick Auger ◽  
Greg L. Beilhartz ◽  
Siqi Zhu ◽  
Elizabeth Cauchon ◽  
Jean-Pierre Falgueyret ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 260 ◽  
Author(s):  
Yi Li ◽  
Lei Deng ◽  
Li-Quan Yang ◽  
Peng Sang ◽  
Shu-Qun Liu

Human immunodeficiency virus type-1 (HIV-1) infection is triggered by its envelope (Env) glycoprotein gp120 binding to the host-cell receptor CD4. Although structures of Env/gp120 in the liganded state are known, detailed information about dynamics of the liganded gp120 has remained elusive. Two structural models, the CD4-free gp120 and the gp120-CD4 complex, were subjected to µs-scale multiple-replica molecular dynamics (MD) simulations to probe the effects of CD4 binding on the conformational dynamics, molecular motions, and thermodynamics of gp120. Comparative analyses of MD trajectories in terms of structural deviation and conformational flexibility reveal that CD4 binding effectively suppresses the overall conformational fluctuations of gp120. Despite the largest fluctuation amplitude of the V1/V2 region in both forms of gp120, the presence of CD4 prevents it from approaching the gp120 core. Comparison of the constructed free energy landscapes (FELs) shows that CD4 binding reduces the conformational entropy and conformational diversity while enhancing the stability of gp120. Further comparison of the representative structures extracted from free energy basins/minima of FELs reveals that CD4 binding weakens the reorientation ability of V1/V2 and hence hinders gp120 from transitioning out of the liganded state to the unliganded state. Therefore, locking gp120 conformation via restraining V1/V2 reorientation with small molecules seems to be a promising strategy to control HIV-1 infection. Our computer simulation results support the conformational selection mechanism for CD4 binding to gp120 and facilitate the understanding of HIV-1 immune evasion mechanisms.


Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Xingcheng Lin ◽  
Prakash Kulkarni ◽  
Federico Bocci ◽  
Nicholas Schafer ◽  
Susmita Roy ◽  
...  

Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.


Sign in / Sign up

Export Citation Format

Share Document