Nondestructive Quality Control of HER2 Control Cell Line Sections

2009 ◽  
Vol 17 (6) ◽  
pp. 536-542 ◽  
Author(s):  
Craig Barker ◽  
Merdol Ibrahim ◽  
Keith Miller ◽  
Vicky Reid
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Parisa Taherzadeh-Soureshjani ◽  
Mohammad Chehelgerdi

Abstract Background Breast cancer (BC), as the most widely recognized disease in women worldwide, represents about 30% of all cancers impacting women. This study was aimed to synthesize Cu2O nanoparticles from the cystoseira myrica algae (CM-Cu2O NPs) assess their antimicrobial activity against pathogenic bacteria and fungi. We evaluated the expression levels of lncRNAs (MALAT1 and GAS5) and apoptosis genes (p53, p27, bax, bcl2 and caspase3), their prognostic roles. Methods In this study, CM-Cu2O NPs synthesized by cystoseira myrica algae extraction used to evaluate its cytotoxicity and apoptotic properties on MDA-MB-231, SKBR3 and T-47D BC cell lines compared to HDF control cell line. The CM-Cu2O NPs was characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). The antimicrobial activity of CM-Cu2O NPs was assessed against pathogenic bacteria, staphylococcus aureus (S. aureus) PTCC 1112 bacteria as a standard gram-positive bacteria and pseudomonas aeruginosa (P. aeruginosa) PTCC 1310 as a standard gram-negative bacterium. Expression profile of MALAT1 and GAS5 lncRNAs and apoptosis genes, i.e., p27, bax, bcl2 and caspase3 genes, were calculated utilizing qRT-PCR. The changes in the expression levels were determined using the DDCT method. Results MALAT1 was upregulated in MDA-MB-231, SKBR3 and T-47D BC (p < 0.01), while GAS5 was downregulated in SKBR3 and T-47D cell lines tested compared with HDF control cell line (p < 0.05) was found. The results revealed that, p27, bax and caspase3 were significantly upregulated in BC cell lines as compared with normal cell line. Bcl2 expression was also significantly increased in MDA-MB-231 and T47D cell lines compared with normal cell line, but bcl2 levels were downregulated in SKBR3 cell line. Conclusions Our results confirm the beneficial cytotoxic effects of green-synthesized CM-Cu2O NPs on BC cell lines. This nanoparticle decreased angiogenesis and induces apoptosis, so we conclude that CM-Cu2O NPs can be used as a supplemental drug in cancer treatments. Significantly, elevated circulating lncRNAs were demonstrated to be BC specific and could differentiate BC cell lines from the normal cell lines. It was demonstrated that lncRNAs used in this study and their expression profiles can be created as biomarkers for early diagnosis and prognosis of BC. Further studies utilizing patients would give recognizable identification of lncRNAs as key players in intercellular interactions.


2016 ◽  
Vol 16 (1) ◽  
pp. 180-183 ◽  
Author(s):  
Adele G. Marthaler ◽  
Benjamin Schmid ◽  
Alisa Tubsuwan ◽  
Ulla B. Poulsen ◽  
Alexander F. Engelbrecht ◽  
...  

BioTechniques ◽  
2002 ◽  
Vol 32 (5) ◽  
pp. 1051-1057 ◽  
Author(s):  
Jeffrey R. Shearstone ◽  
Norman E. Allaire ◽  
Michael E. Getman ◽  
Steven Perrin

Refractories ◽  
1994 ◽  
Vol 35 (1-2) ◽  
pp. 26-31
Author(s):  
Yu. M. Rapoport ◽  
V. G. Sloushch

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3201-3201
Author(s):  
Cori Abikoff ◽  
Daciana Margineantu ◽  
David Hockenbery

Abstract Abstract 3201 The BCL2 family of proteins are well known for their ability to both positively and negatively regulate mitochondrial mechanisms of apoptosis. The anti-apoptotic members of this family can decrease mitochondrial outer membrane permeability and cytochrome c release. By stabilizing the cell against apoptosis, these proteins allow cell survival even in states of low energy. However, despite this intimate link between the BCL2 family proteins and mitochondria, their direct effect on metabolism is less clearly understood. It is generally expected that metabolic changes induced by the BCL2 family of proteins will further impact cell survival as murine hepatoma and cancer cells overexpressing Bcl-xL are sensitive to Bcl-xL inhibition1 but BCL-xL is also known to be essential for erythroid differentiation and more recently was linked specifically to heme synthesis2. We therefore set out to investigate whether there was a connection between BCL-xL induced changes in cellular respiration and erythroid differentiation. Murine erythroleukemia (MEL) cells were differentiated by exposure to 2% DMSO for 5 days and then real time oxygen consumption was measured on the Seahorse extracellular flux analyzer (XFA). DMSO induced differentiation yielded a 4-fold decrease in oxygen consumption. Western blot analysis revealed that BCL-xL was induced during differentiation. We then generated cell lines in which BCL-xL was knocked down with small hairpin RNA (shRNA). As differentiation has previously been reported to be fatal in MEL cells without BCL-xL activity, both parental cells and BCL-xL knockdowns were infected with a vector over expressing BCL2. Differentiation over 5 days with 2% DMSO was performed on these new cell lines. Erythroid differentiation was confirmed using Benzidine staining. While the control cell line showed high rates of Benzidine staining after exposure to DMSO, the BCL-xL knockdown cell line consistently showed <5% benzidine positivity. Western blot analysis confirmed the absence of BCL-xL induction by DMSO exposure in the knockdown cell line. Using the Seahorse XFA the control cell line was shown to have significant decrease in oxygen consumption when exposed to DMSO, while DMSO exposed BCL-xL knockdown cells showed less than half this drop in oxygen consumption. However, both control and BCL-xL knockdowns have limited respiratory reserve as the response to CCCP, an uncoupler of electron transport, is diminished after DMSO exposure as compared to their undifferentiated counterparts. Our results suggest that erythroid differentiation is associated with a significant decrease in cellular respiration. Although, not the only contributor to the decreased dependence on oxidative phosphorylation of cells undergoing erythroid differentiation, BCL-xL expression is clearly a necessary factor. Our data is able to connect BCL-xL expression to both erythroid differentiation and this distinct metabolic phenotype. As BCL-xL's role in erythroid differentiation has previously been reported to be associated with heme synthesis, future work will focus on identifying oxidative metabolic pathways associated with BCL-xL expression and heme synthesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document