Systematic Evaluation of Amide Proton Chemical Exchange Saturation Transfer at 3 T

2016 ◽  
Vol 51 (10) ◽  
pp. 635-646 ◽  
Author(s):  
Holger Schmidt ◽  
Nina F. Schwenzer ◽  
Sergios Gatidis ◽  
Thomas Küstner ◽  
Konstantin Nikolaou ◽  
...  
2015 ◽  
Vol 93 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Melissa M. Lewis ◽  
Mark Milne ◽  
Robert Bartha ◽  
Robert H.E. Hudson

A series of 1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate monoamide (DO3A-monoanilide) complexes Dy3+ and Tm3+ were prepared and their magnetic properties evaluated in the context of their potential use as pH sensors. The ligands varied by para-substitution of the aniline moiety and represent electron-withdrawing and electron-donating groups. Only the Tm3+ complexes produced chemical exchange saturation transfer (CEST) spectra with CEST intensities due to the amide proton ranging from 1% to 8%. A maximum CEST signal was observed under slightly alkaline conditions (pH ∼8) when electron-donating groups were present, whereas the strongly electron-withdrawing nitro group produced a maximum CEST at neutral pH (pH = 7). The T1 and T2 relaxivities of the Dy3+ and Tm3+ complexes were also assessed. The T1 relaxivities of the Dy3+ and Tm3+ complexes were both low (r1 ≤ 0.3 mM−1 s−1, 25 °C, pH = 7) but, as expected, the Dy3+ complexes had much higher T2 relaxivities (r2 = 2–7 mM−1 s−1, 25 °C, pH = 7) as compared to the Tm3+-based chelates (r2 ≤ 0.09 mM−1 s−1, 25 °C, pH = 7).


NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 202-213 ◽  
Author(s):  
Hye-Young Heo ◽  
Zheng Han ◽  
Shanshan Jiang ◽  
Michael Schär ◽  
Peter C.M. van Zijl ◽  
...  

2017 ◽  
Vol 53 (61) ◽  
pp. 8541-8544 ◽  
Author(s):  
Qinglin Wu ◽  
Benjamin A. Fenton ◽  
Jessica L. Wojtaszek ◽  
Pei Zhou

The HNdec-CEST experiment enables robust extraction of excited-state information of macromolecules.


2021 ◽  
Author(s):  
Eleni Demetriou ◽  
Mohamed Tachrount ◽  
Matthew Ellis ◽  
Jacqueline Linehan ◽  
Sebastian Brandner ◽  
...  

Human prion diseases are fatal neurodegenerative disorders that may have prolonged asymptomatic incubation periods. However, the underlying mechanism by which prions cause brain damage remains unclear. In turn, characterization of early pathological aspects would be of benefit for the diagnosis and potential treatment of these progressive neurodegenerative disorders. We investigated chemical exchange saturation transfer (CEST) MRI based on its exquisite sensitivity to cytosol protein content as a surrogate for prion disease pathology. Three groups of prion-infected mice at different stages of the disease underwent conventional magnetic resonance imaging and CEST MRI at 9.4T. For each mouse, chemical exchange contrasts were measured by applying five RF powers at various frequency offsets using magnetization transfer asymmetries. Relayed Nuclear Overhauser effects (NOE*) and amide proton transfer (APT*) were also assessed. For comparison, CEST MRI measurements were also made in healthy control mice brains. Here we show that alterations in CEST signal were detected before structural modifications or any clinical signs of prion disease. The detected CEST signal displayed different patterns at different stages of the disease indicating its potential for use as a longitudinal marker of disease progression. Highly significant correlations were found between CEST metrics and histopathological findings. A decline in NOE signal was positively correlated with abnormal prion protein deposition (R2 = 0.91) in the thalami of prion infected mice. Moreover, the NOE signal was negatively correlated with astrogliosis (R2 = 0.71) in the thalamus. No significant correlations were detected between NOE signals and spongiosis. MTR asymmetry at 3.5 ppm was also correlated with astrogliosis (R2 = 0.59), and prion protein deposition (R2 = 0.63) in thalamus. No significant changes were detected in APT* between prion-infected and control mice at all stages of the disease. Finally, MTR asymmetry between 2.8 and 3.2 ppm was correlated with prion protein deposition (R2 = 0.47) in the thalamus of prion -infected mice. To conclude, CEST MRI has potential utility as a biomarker of neurodegenerative processes in prion disease


Sign in / Sign up

Export Citation Format

Share Document