Reduced Insulin Resistance Contributes to the Beneficial Effect of Protein Tyrosine Phosphatase-1B Deletion in a Mouse Model of Sepsis

Shock ◽  
2017 ◽  
Vol 48 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Eugénie Delile ◽  
Rémi Nevière ◽  
Pierre-Alain Thiébaut ◽  
Julie Maupoint ◽  
Paul Mulder ◽  
...  
2017 ◽  
Vol 131 (20) ◽  
pp. 2489-2501 ◽  
Author(s):  
Dawn Thompson ◽  
Nicola Morrice ◽  
Louise Grant ◽  
 Samantha Le Sommer ◽  
Emma K. Lees ◽  
...  

Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR−/− mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR−/− mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.


Sign in / Sign up

Export Citation Format

Share Document