Computer-Assisted Surgery and Intraoperative Three-Dimensional Imaging for Screw Placement in Different Pelvic Regions

2011 ◽  
Vol 71 (4) ◽  
pp. 926-932 ◽  
Author(s):  
Lars Grossterlinden ◽  
Jakob Nuechtern ◽  
Philipp G. C. Begemann ◽  
Ina Fuhrhop ◽  
Jan P. Petersen ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Christoph Zindel ◽  
Philipp Fürnstahl ◽  
Armando Hoch ◽  
Tobias Götschi ◽  
Andreas Schweizer ◽  
...  

Abstract Background Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. So far, the described fracture reduction approaches rely strongly on the performance of the users. The goal of our study was to analyze the influence of the two different professional backgrounds (technical and medical) and skill levels regarding the reliability of the proposed planning method. Finally, a new fragment displacement measurement method was introduced due to the lack of consistent methods in the literature. Methods 3D bone models of 20 distal radius fractures were presented to nine raters with different educational backgrounds (medical and technical) and various levels of experience in 3D operation planning (0 to 10 years) and clinical experience (1.5 to 24 years). Each rater was asked to perform the fracture reduction on 3D planning software. Results No difference was demonstrated in reduction accuracy regarding rotational (p = 1.000) and translational (p = 0.263) misalignment of the fragments between biomedical engineers and senior orthopedic residents. However, a significantly more accurate planning was performed in these two groups compared with junior orthopedic residents with less clinical experience and no 3D planning experience (p < 0.05). Conclusion Experience in 3D operation planning and clinical experience are relevant factors to plan an intra-articular fragment reduction of the distal radius. However, no difference was observed regarding the educational background (medical vs. technical) between biomedical engineers and senior orthopedic residents. Therefore, our results support the further development of computer-assisted surgery planning by biomedical engineers. Additionally, the introduced fragment displacement measure proves to be a feasible and reliable method. Level of Evidence Diagnostic Level II


2021 ◽  
Vol 11 ◽  
Author(s):  
Max Wilkat ◽  
Norbert Kübler ◽  
Majeed Rana

Curatively intended oncologic surgery is based on a residual-free tumor excision. Since decades, the surgeon’s goal of R0-resection has led to radical resections in the anatomical region of the midface because of the three-dimensionally complex anatomy where aesthetically and functionally crucial structures are in close relation. In some cases, this implied aggressive overtreatment with loss of the eye globe. In contrast, undertreatment followed by repeated re-resections can also not be an option. Therefore, the evaluation of the true three-dimensional tumor extent and the intraoperative availability of this information seem critical for a precise, yet substance-sparing tumor removal. Computer assisted surgery (CAS) can provide the framework in this context. The present study evaluated the beneficial use of CAS in the treatment of midfacial tumors with special regard to tumor resection and reconstruction. Therefore, 60 patients diagnosed with a malignancy of the upper jaw has been treated, 31 with the use of CAS and 29 conventionally. Comparison of the two groups showed a higher rate of residual-free resections in cases of CAS application. Furthermore, we demonstrate the use of navigated specimen taking called tumor mapping. This procedure enables the transparent, yet precise documentation of three-dimensional tumor borders which paves the way to a more feasible interdisciplinary exchange leading e.g. to a much more focused radiation therapy. Moreover, we evaluated the possibilities of primary midface reconstructions seizing CAS, especially in cases of infiltrated orbital floors. These cases needed reduction of intra-orbital volume due to the tissue loss after resection which could be precisely achieved by CAS. These benefits of CAS in midface reconstruction found expression in positive changes in quality of life. The present work was able to demonstrate that the area of oncological surgery of the midface is a prime example of interface optimization based on the sensible use of computer assistance. The fact that the system makes the patient transparent for the surgeon and the procedure controllable facilitates a more precise and safer treatment oriented to a better outcome.


2019 ◽  
Vol 32 (03) ◽  
pp. 241-249 ◽  
Author(s):  
Andrew Worth ◽  
Katherine Crosse ◽  
Andrew Kersley

Objective The aim of this study was to report the use of custom saw guides produced using computed tomographic imaging (CT), computer simulation and three-dimensional (3D) printing to aid surgical correction of antebrachial deformities in six dogs. Materials and Methods Antebrachial limb deformities in four small, and two large, breed dogs (seven limbs) were surgically corrected by a radial closing wedge ostectomy and ulnar osteotomy. The location and orientation of the wedge ostectomy were determined using CT data, computer-assisted planning and production of a saw guide in plastic using a 3D printer. At surgery, the guide was clamped to the surface of the radius and used to direct the oscillating saw blade. The resultant ostectomy was closed and stabilized with a bone plate. Results Five limbs healed without complications. One limb was re-operated due to a poorly resolved rotational component of the deformity. One limb required additional stabilisation with external fixation due to screw loosening. The owners of five dogs completed a Canine Orthopedic Index survey at a follow-up period of 37 to 81 months. The median preoperative score was 3.5 and the median postoperative score was 1, representing an overall positive effect of surgery. Radiographically, 5/7 limbs were corrected in the frontal plane (2/7 were under-corrected). Similarly, 5/7 limbs were corrected in the sagittal plane, and 2/7 were over-corrected in the sagittal place. Conclusions Computer-aided design and rapid prototyping technologies can be used to create saw guides to simplify one-stage corrective osteotomies of the antebrachium using internal fixation in dogs. Despite the encouraging results, accurate correction of rotational deformity was problematic and this aspect requires further development.


2010 ◽  
Vol 13 (5) ◽  
pp. 606-611 ◽  
Author(s):  
Yoshimoto Ishikawa ◽  
Tokumi Kanemura ◽  
Go Yoshida ◽  
Zenya Ito ◽  
Akio Muramoto ◽  
...  

Object The authors performed a retrospective clinical study to evaluate the feasibility and accuracy of cervical pedicle screw (CPS) placement using 3D fluoroscopy-based navigation (3D FN). Methods The study involved 62 consecutive patients undergoing posterior stabilization of the cervical spine between 2003 and 2008. Thirty patients (126 screws) were treated using conventional techniques (CVTs) with a lateral fluoroscopic view, whereas 32 patients (150 screws) were treated using 3D FN. Screw positions were classified into 4 grades based on the pedicle wall perforations observed on postoperative CT. Results The prevalence of perforations in the CVT group was 27% (34 screws): 92 (73.0%), 12 (9.5%), 6 (4.8%), and 16 (12.7%) for Grade 0 (no perforation), Grade 1 (perforation < 1 mm), Grade 2 (perforation ≥ 1 and < 2 mm), and Grade 3 (perforation ≥ 2 mm), respectively. In the 3D FN group, the prevalence of perforations was 18.7% (28 screws): 122 (81.3%), 17 (11.3%), 6 (4%), and 5 (3.3%) for Grades 0, 1, 2, and 3, respectively. Statistical analysis showed no significant difference in the prevalence of Grade 1 or higher perforations between the CVT and 3D FN groups. A higher prevalence of malpositioned CPSs was seen in Grade 2 or higher (17.5% vs 7.3%, p < 0.05) in the 3D FN group and Grade 3 (12.7% vs 7.3%, p < 0.05) perforations in the CVT group. The ORs for CPS malpositioning in the CVT group were 2.72 (95% CI 1.16–6.39) in Grade 2 or higher perforations and 3.89 (95% CI 1.26–12.02) in Grade 3 perforations. Conclusions Three-dimensional fluoroscopy-based navigation can improve the accuracy of CPS insertion; however, severe CPS malpositioning that causes injury to the vertebral artery or neurological complications can occur even with 3D FN. Advanced techniques for the insertion of CPSs and the use of modified insertion devices can reduce the risk of a malpositioned CPS and provide increased safety.


2015 ◽  
Vol 24 (7) ◽  
pp. 1112-1119 ◽  
Author(s):  
Gabriel Venne ◽  
Brian J. Rasquinha ◽  
David Pichora ◽  
Randy E. Ellis ◽  
Ryan Bicknell

Sign in / Sign up

Export Citation Format

Share Document