scholarly journals Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation

2018 ◽  
Vol 102 (6) ◽  
pp. 978-985 ◽  
Author(s):  
Boris L. Gala-Lopez ◽  
Daniel Neiman ◽  
Tatsuya Kin ◽  
Doug O’Gorman ◽  
Andrew R. Pepper ◽  
...  
2020 ◽  
Vol 105 (3) ◽  
pp. 781-791 ◽  
Author(s):  
Cate Speake ◽  
Alyssa Ylescupidez ◽  
Daniel Neiman ◽  
Ruth Shemer ◽  
Benjamin Glaser ◽  
...  

Abstract Context There is an unmet need for biomarkers of pancreatic beta-cell death to improve early diagnosis of type 1 diabetes, enroll subjects into clinical trials, and assess treatment response. To address this need, several groups developed assays measuring insulin deoxyribonucleic acid (DNA) with unmethylated CpG sites in cell-free DNA. Unmethylated insulin DNA should be derived predominantly from beta-cells and indicate ongoing beta-cell death. Objective To assess the performance of three unmethylated insulin DNA assays. Design and Participants Plasma or serum samples from 13 subjects undergoing total pancreatectomy and islet autotransplantation were coded and provided to investigators to measure unmethylated insulin DNA. Samples included a negative control taken post-pancreatectomy but pretransplant, and a positive control taken immediately following islet infusion. We assessed technical reproducibility, linearity, and persistence of detection of unmethylated insulin DNA for each assay. Results All assays discriminated between the negative sample and samples taken directly from the islet transplant bag; 2 of 3 discriminated negative samples from those taken immediately after islet infusion. When high levels of unmethylated insulin DNA were present, technical reproducibility was generally good for all assays. Conclusions The measurement of beta cell cell-free DNA, including insulin, is a promising approach, warranting further testing and development in those with or at-risk for type 1 diabetes, as well as in other settings where understanding the frequency or kinetics of beta cell death could be useful.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 231-OR
Author(s):  
MUGDHA JOGLEKAR ◽  
RYAN FARR ◽  
WILSON WONG ◽  
KRISTINA ROTHER ◽  
ALICIA JENKINS ◽  
...  

Author(s):  
Geert Antoine Martens ◽  
Geert Stange ◽  
Lorenzo Piemonti ◽  
Jasper Anckaert ◽  
Zhidong Ling ◽  
...  

Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. MicroRNA-375 (miR-375) ranks among top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 hour before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to identification of 8 microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients, by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.


2016 ◽  
Author(s):  
Benedicte Brackeva ◽  
Sarah Roels ◽  
Geert Stangé ◽  
Gamze Ates ◽  
Olivier R. Costa ◽  
...  

AbstractBACKGROUNDPancreatic islet grafts are cultured in vitro prior to transplantation and this is associated to a variable degree of beta cell loss. Optimization of culture conditions is currently hampered by the lack of a specific and sensitive in vitro indicator of beta cell death.METHODSWe developed a high-sensitivity duplex bead-based immunoassay for two protein-type biomarkers of beta cell destruction, GAD65 and UCHL1, and investigated its proficiency for in vitro toxicity profiling on rodent and human beta cells, as compared to a semi-automatic and manual image-based assessment of beta cell death, and in vivo after intraportal islet transplantation.RESULTSBoth GAD65 and UCHL1 were discharged by necrotic and apoptotic beta cells proportionate to the number of dead beta cells as counted by microscopic methods. In vitro, UCHL1 was superior to GAD65, in terms of biomarker stability providing more sensitive detection of low grade beta cell death. In vivo, however, GAD65 was consistently detected after islet transplantation while UCHL1 remained undetectable.CONCLUSIONThe use of soluble biomarkers represents a fast, selective and sensitive method for beta cell toxicity profiling in vitro. UCHL1 is superior to GAD65 in vitro but not in vivo.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1693
Author(s):  
Geert A. Martens ◽  
Geert Stangé ◽  
Lorenzo Piemonti ◽  
Jasper Anckaert ◽  
Zhidong Ling ◽  
...  

Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. microRNA-375 (miR-375) ranks among the top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 h before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to the identification of eight microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome, and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.


2018 ◽  
Vol 27 (11) ◽  
pp. 1684-1691 ◽  
Author(s):  
Elisabet Estil·les ◽  
Noèlia Téllez ◽  
Montserrat Nacher ◽  
Eduard Montanya

Streptozotocin (STZ) is a cytotoxic glucose analogue that causes beta cell death and is widely used to induce experimental diabetes in rodents. The sensitivity of beta cells to STZ is species-specific and human beta cells are resistant to STZ. In experimental islet transplantation to rodents, STZ-diabetes must be induced before transplantation to avoid destruction of grafted islets by STZ. In human islet transplantation, injection of STZ before transplantation is inconvenient and costly, since human islet availability depends on organ donation and frail STZ-diabetic mice must be kept for unpredictable lapses of time until a human islet preparation is available. Based on the high resistance of human beta cells to STZ, we have tested a new model for STZ-diabetes induction in which STZ is injected after human islet transplantation. Human and mouse islets were transplanted under the kidney capsule of athymic nude mice, and 10–14 days after transplantation mice were intraperitoneally injected with five consecutive daily doses of STZ or vehicle. Beta-cell death increased and beta-cell mass was reduced in mouse islet grafts after STZ injection. In contrast, in human islet grafts beta cell death and mass did not change after STZ injection. Mice transplanted with rodent islets developed hyperglycemia after STZ-injection. Mice transplanted with human islets remained normoglycemic and developed hyperglycemia when the graft was harvested. STZ had no detectable toxic effects on beta cell death, mass and function of human transplanted islets. We provide a new, more convenient and cost-saving model for human islet transplantation to STZ-diabetic recipients in which STZ is injected after islet transplantation.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 82-OR
Author(s):  
ANDREW T. TEMPLIN ◽  
MEGHAN F. HOGAN ◽  
NATHALIE ESSER ◽  
SAKENEH ZRAIKA ◽  
REBECCA L. HULL ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (5) ◽  
pp. 750-757 ◽  
Author(s):  
B. A. O'Brien ◽  
B. V. Harmon ◽  
D. P. Cameron ◽  
D. J. Allan

Sign in / Sign up

Export Citation Format

Share Document