scholarly journals Predicting conditions for migration: effects of density dependence and habitat quality

2007 ◽  
Vol 3 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Caz M Taylor ◽  
D. Ryan Norris

Migration is widespread among animals, but the factors that influence the decision to migrate are poorly understood. Within a single species, populations may be completely migratory, completely sedentary or partially migratory. We use a population model to derive conditions for migration and demonstrate how migratory survival, habitat quality and density dependence on both the breeding and non-breeding grounds influence conditions for migration and the proportion of migrants within a population. Density dependence during the season in which migratory and sedentary individuals use separate sites is necessary for partial migration. High levels of density dependence at the non-shared sites widen the range of survival values within which we predict partial migration, whereas increasing the strength of density dependence at the shared sites narrows the range of survival values within which we predict partial migration. Our results have important implications for predicting how contemporary populations with variable migration strategies may respond to changes in the quality or quantity of habitat.

10.2307/3535 ◽  
1974 ◽  
Vol 43 (3) ◽  
pp. 747 ◽  
Author(s):  
R. M. May ◽  
G. R. Conway ◽  
M. P. Hassell ◽  
T. R. E. Southwood

Author(s):  
Michael J. Fogarty ◽  
Jeremy S. Collie

The observation that no population can grow indefinitely and that most populations persist on ecological timescales implies that mechanisms of population regulation exist. Feedback mechanisms include competition for limited resources, cannibalism, and predation rates that vary with density. Density dependence occurs when per capita birth or death rates depend on population density. Density dependence is compensatory when the population growth rate decreases with population density and depensatory when it increases. The logistic model incorporates density dependence as a simple linear function. A population exhibiting logistic growth will reach a stable population size. Non-linear density-dependent terms can give rise to multiple equilibria. With discrete time models or time delays in density-dependent regulation, the approach to equilibrium may not be smooth—complex dynamical behavior is possible. Density-dependent feedback processes can compensate, up to a point, for natural and anthropogenic disturbances; beyond this point a population will collapse.


2019 ◽  
pp. 63-80
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

This chapter reviews the basic mathematics of population growth as described by the exponential growth model and the logistic growth model. These simple models of population growth provide a foundation for the development of more complex models of species interactions covered in later chapters on predation, competition, and mutualism. The second half of the chapter examines the important topic of density-dependence and its role in population regulation. The preponderance of evidence for negative density-dependence in nature is reviewed, along with examples of positive density dependence (Allee effects). The study of density dependence in single-species populations leads naturally to the concept of community-level regulation, the idea that species richness or the total abundance of individuals in a community may be regulated just like abundance in a single-species population. The chapter concludes with a look at the evidence for community regulation in nature and a discussion of its importance.


10.2307/3863 ◽  
1975 ◽  
Vol 44 (1) ◽  
pp. 283 ◽  
Author(s):  
M. P. Hassell

Oryx ◽  
2016 ◽  
Vol 51 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Nawang Norbu ◽  
Ugyen ◽  
Martin C. Wikelski ◽  
David S. Wilcove

AbstractRelative to long-distance migrants, altitudinal migrants have been understudied, perhaps because of a perception that their migrations are less complex and therefore easier to protect. Nonetheless, altitudinal migrants may be at risk as they are subject to ongoing anthropogenic pressure from land use and climate change. We used global positioning system/accelerometer telemetry to track the partial altitudinal migration of the satyr tragopan Tragopan satyra in central Bhutan. The birds displayed a surprising diversity of migratory strategies: some individuals did not migrate, others crossed multiple mountains to their winter ranges, others descended particular mountains, and others ascended higher up into the mountains in winter. In all cases migration between summer breeding and winter non-breeding grounds was accomplished largely by walking, not by flying. Females migrated in a south-easterly direction whereas males migrated in random directions. During winter, migrants occupied south-east facing slopes whereas residents remained on south-west facing slopes. Migratory and resident tragopans utilized a range of forest types, with migratory individuals preferring cool broadleaved forests during winter. These complex patterns of migration suggest that conservation measures should extend across multiple mountains, protect the full range of forest types and encompass multiple landscape configurations to protect aspect diversity. Given the diversity of migratory strategies employed by this single species it seems clear that more research on altitudinal migrants is needed to understand what must be done to ensure their future in an era of widespread land-use and climate change.


Sign in / Sign up

Export Citation Format

Share Document