scholarly journals Low fertility of wild hybrid male flycatchers despite recent divergence

2013 ◽  
Vol 9 (3) ◽  
pp. 20130169 ◽  
Author(s):  
Murielle Ålund ◽  
Simone Immler ◽  
Amber M. Rice ◽  
Anna Qvarnström

Postzygotic isolation may be important for maintaining species boundaries, particularly when premating barriers are incomplete. Little is known about the course of events leading from minor environmental mismatches affecting hybrid fitness to severe genetic incompatibilities causing sterility or inviability. We investigated whether reduced reproductive success of hybrid males was caused by suboptimal sperm traits or by more severe genetic incompatibilities in a hybrid zone of pied ( Ficedula hypoleuca ) and collared flycatchers ( F. albicollis ) on the island of Öland, Sweden. About 4 per cent hybridization is observed in this population and all female hybrids are sterile. We found no sperm in the ejaculates of most sampled hybrid males, and sperm with abnormal morphology in two hybrids. Furthermore, none of the hybrids sired any offspring because of high levels of hatching failure and extra-pair paternity in their nests. These results from a natural hybrid zone suggest that the spermatogenesis of hybrid males may become disrupted despite little genetic divergence between the parental species.

Evolution ◽  
1998 ◽  
Vol 52 (6) ◽  
pp. 1602 ◽  
Author(s):  
Diane R. Campbell ◽  
Nickolas M. Waser ◽  
Paul G. Wolf

2019 ◽  
Vol 28 (4) ◽  
pp. 761-771 ◽  
Author(s):  
Peter A. Scott ◽  
Travis C. Glenn ◽  
Leslie J. Rissler

2020 ◽  
Vol 190 (2) ◽  
pp. 757-769
Author(s):  
Imanol Cabaña ◽  
Margarita Chiaraviglio ◽  
Valeria Di Cola ◽  
Antoine Guisan ◽  
Olivier Broennimann ◽  
...  

Abstract Understanding the factors that affect hybridization is an important issue in the study of species evolution. In this work, we analyse the genetic structure of two lizard species, Salvator merianae and Salvator rufescens, at a microscale within a climatic niche analysis framework, to reveal the main factors that contribute to the stability of their hybrid zone. We assess the effect of climate in hybridization by quantifying and decomposing the niche overlap of both species. Using a mitochondrial and a nuclear marker, we find that hybridization is frequent and is not restricted to the sympatric region. The gene flow is mainly from S. rufescens to S. merianae, with introgression into the range of S. merianae. Also, S. merianae would have long been present in the area, while S. rufescens appears to be a recent colonizer. The climate contributes to the population structure of S. merianae, but not to that of S. rufescens. The niches occupied by S. rufescens in the hybrid zone and the non-hybrid zone are similar, while the niches of S. merianae are different. Our results do not fit previous models of hybrid zone stability, suggesting the need to develop new models that consider the evolutionary factors that can differentially affect parental species and hybrids.


2019 ◽  
Vol 128 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Katerina H Hora ◽  
František Marec ◽  
Peter Roessingh ◽  
Steph B J Menken

Abstract In evolutionarily young species and sympatric host races of phytophagous insects, postzygotic incompatibility is often not yet fully developed, but reduced fitness of hybrids is thought to facilitate further divergence. However, empirical evidence supporting this hypothesis is limited. To assess the role of reduced hybrid fitness, we studied meiosis and fertility in hybrids of two closely related small ermine moths, Yponomeuta padella and Yponomeuta cagnagella, and determined the extent of intrinsic postzygotic reproductive isolation. We found extensive rearrangements between the karyotypes of the two species and irregularities in meiotic chromosome pairing in their hybrids. The fertility of reciprocal F1 and, surprisingly, also of backcrosses with both parental species was not significantly decreased compared with intraspecific offspring. The results indicate that intrinsic postzygotic reproductive isolation between these closely related species is limited. We conclude that the observed chromosomal rearrangements are probably not the result of an accumulation of postzygotic incompatibilities preventing hybridization. Alternative explanations, such as adaptation to new host plants, are discussed.


The Auk ◽  
2000 ◽  
Vol 117 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Scott F. Pearson ◽  
David A. Manuwal

Abstract Hybrid zones between Townsend's Warblers (Dendroica townsendi) and Hermit Warblers (D. occidentalis) in the Pacific Northwest are narrow relative to estimated dispersal distances and appear to be moving, with Townsend's replacing Hermits. We examined whether the habitat-transition and parental-fitness asymmetry models can explain why these zones are narrow and moving by comparing habitat variables associated with warbler territories in the Washington Cascades hybrid zone. Habitat variables did not differ among phenotypes, suggesting that the habitat-transition model cannot explain the narrow and dynamic nature of this hybrid zone. Habitat characteristics of Hermit Warbler territories did not differ inside versus outside the hybrid zone, also suggesting that this zone is not associated with a region of habitat transition. The lack of difference in habitat use could be the result of comparing variables that are not important to pairing success. However, warblers tended to select territories on west-southwest aspects. South aspects in the southern Washington Cascades are dominated by Douglas fir (Pseudotsuga menziesii) and true fir, which is a habitat selected by female warblers when choosing among territories and males. The parental-fitness asymmetry model does not necessarily make predictions about habitat use within the hybrid zone but predicts the superiority of one parental species over the other. However, if significant overlap occurs in habitat use or niche (as in these warblers), then competition between parental species is likely to occur. To determine whether these species compete, we mapped 12 warbler territories and monitored an additional 94 territories throughout the breeding season and found that all males with neighbors compete for and hold exclusive territories. Thus, the pattern of habitat use and territoriality is consistent with the parental-fitness asymmetry model.


2010 ◽  
Vol 365 (1552) ◽  
pp. 2469-2478 ◽  
Author(s):  
Noland H. Martin ◽  
John H. Willis

The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus . We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F 1 and F 2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.


2017 ◽  
Author(s):  
Mitra Menon ◽  
Justin C. Bagley ◽  
Christopher Friedline ◽  
Amy V. Whipple ◽  
Anna W. Schoettle ◽  
...  

AbstractInteractions between extrinsic factors, such as disruptive selection, and intrinsic factors, such as genetic incompatibilities among loci, can contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries between Pinus strobiformis and P.flexilis. Utilizing ecological niche modeling, demographic modeling, and genomic cline analyses, we illustrated a history of divergence with continuous gene flow between these species. We found an abundance of advanced generation hybrids and a lack of loci exhibiting large allele frequency differences across the hybrid zone. Additionally, we found evidence for climate-associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. Our results are consistent with extrinsic factors, such as climate, being an important isolating mechanism for these species. A buildup of intrinsic incompatibilities and of co-adapted gene complexes is also apparent in our results, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in creating and enforcing species boundaries. Overall, we lend support to the hypothesis that varying strengths and directions of selection pressures across the long lifespans of conifers, in combination with their life history strategies, delay the evolution of strong intrinsic incompatibilities.


Author(s):  
Jeremy Andersen ◽  
Nathan Havill ◽  
George Boettner ◽  
Jennifer Chandler ◽  
Adalgisa Caccone ◽  
...  

Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here we report on a long-term microsatellite dataset that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we find that the location of the hybrid zone appears to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone is constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.


Sign in / Sign up

Export Citation Format

Share Document