scholarly journals Factors influencing organic carbon accumulation in mangrove ecosystems

2018 ◽  
Vol 14 (10) ◽  
pp. 20180237 ◽  
Author(s):  
Alexander Pérez ◽  
Bruno G. Libardoni ◽  
Christian J. Sanders

There is growing interest in the capacity of mangrove ecosystems to sequester and store ‘blue carbon’. Here, we provide a synthesis of 66 dated sediment cores with previously calculated carbon accumulation rates in mangrove ecosystems to assess the effects of environmental and anthropogenic pressures. Conserved sedimentary environments were found to be within the range of the current global average for sediment accretion (approx. 2.5 mm yr –1 ) and carbon accumulation (approx. 160 g m −2 yr −1 ). Moreover, similar sediment accretion and carbon accumulation rates were found between mixed and monotypic mangrove forests, however higher mean and median values were noted from within the forest as compared to adjacent areas such as mudflats. The carbon accumulation within conserved environments was up to fourfold higher than in degraded or deforested environments but threefold lower than those impacted by domestic or aquaculture effluents (more than 900 g m −2 yr −1 ) and twofold lower than those impacted by storms and flooding (more than 500 g m −2 yr −1 ). These results suggest that depending on the type of impact, the blue carbon accumulation capacity of mangrove ecosystems may become substantially modified.

Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Champlin ◽  
Velinsky ◽  
Tucker ◽  
Sommerfield ◽  
Laurent ◽  
...  

Quantifying carbon sequestration by tidal wetlands is important for the management of carbon stocks as part of climate change mitigation. This data publication includes a spatial analysis of carbon accumulation rates in Barnegat and Delaware Bay tidal wetlands. One method calculated long-term organic carbon accumulation rates from radioisotope-dated (Cs-137) sediment cores. The second method measured organic carbon density of sediment accumulated above feldspar marker beds. Carbon accumulation rates generated by these two methods were interpolated across emergent wetland areas, using kriging, with uncertainty estimated by leave-one-out cross validation. This spatial analysis revealed greater carbon sequestration within Delaware, compared to Barnegat Bay. Sequestration rates were found to be more variable within Delaware Bay, and rates were greatest in the tidal freshwater area of the upper bay.


2016 ◽  
Vol 24 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Richard A. MacKenzie ◽  
Patra B. Foulk ◽  
J. Val Klump ◽  
Kimberly Weckerly ◽  
Joko Purbospito ◽  
...  

2017 ◽  
Vol 579 ◽  
pp. 439-446 ◽  
Author(s):  
Lúcio F. Lourençato ◽  
Pedro P. Caldeira ◽  
Marcelo C. Bernardes ◽  
Andressa C. Buch ◽  
Daniel C. Teixeira ◽  
...  

2020 ◽  
Vol 43 (8) ◽  
pp. 2076-2091 ◽  
Author(s):  
A. B. Novak ◽  
M. C. Pelletier ◽  
P. Colarusso ◽  
J. Simpson ◽  
M. N. Gutierrez ◽  
...  

Abstract Increasing the protection of coastal vegetated ecosystems has been suggested as one strategy to compensate for increasing carbon dioxide (CO2) in the atmosphere as the capacity of these habitats to sequester and store carbon exceeds that of terrestrial habitats. Seagrasses are a group of foundation species that grow in shallow coastal and estuarine systems and have an exceptional ability to sequester and store large quantities of carbon in biomass and, particularly, in sediments. However, carbon stocks (Corg stocks) and carbon accumulation rates (Corg accumulation) in seagrass meadows are highly variable both spatially and temporally, making it difficult to extrapolate this strategy to areas where information is lacking. In this study, Corg stocks and Corg accumulation were determined at 11 eelgrass meadows across New England, representing a range of eutrophication and exposure conditions. In addition, the environmental factors and structural characteristics of meadows related to variation in Corg stocks were identified. The objectives were accomplished by assessing stable isotopes of δ13C and δ15N as well as %C and %N in plant tissues and sediments, measuring grain size and 210Pb of sediment cores, and through assessing site exposure. Variability in Corg stocks in seagrass meadows is well predicted using commonly measured environmental variables such as grain size distribution. This study allows incorporation of data and insights for the northwest Atlantic, where few studies on carbon sequestration by seagrasses have been conducted.


2019 ◽  
Vol 124 (11) ◽  
pp. 3652-3671 ◽  
Author(s):  
E. Fay Belshe ◽  
Jose Sanjuan ◽  
Carmen Leiva‐Dueñas ◽  
Nerea Piñeiro‐Juncal ◽  
Oscar Serrano ◽  
...  

2021 ◽  
Vol 759 ◽  
pp. 143535
Author(s):  
Stephen M. Bell ◽  
César Terrer ◽  
Carles Barriocanal ◽  
Robert B. Jackson ◽  
Antoni Rosell-Melé

Ecosystems ◽  
2011 ◽  
Vol 15 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Caitlin E. Hicks Pries ◽  
Edward A. G. Schuur ◽  
K. Grace Crummer

Sign in / Sign up

Export Citation Format

Share Document