scholarly journals Carbon Sequestration Rate Estimates in Delaware Bay and Barnegat Bay Tidal Wetlands Using Interpolation Mapping

Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Champlin ◽  
Velinsky ◽  
Tucker ◽  
Sommerfield ◽  
Laurent ◽  
...  

Quantifying carbon sequestration by tidal wetlands is important for the management of carbon stocks as part of climate change mitigation. This data publication includes a spatial analysis of carbon accumulation rates in Barnegat and Delaware Bay tidal wetlands. One method calculated long-term organic carbon accumulation rates from radioisotope-dated (Cs-137) sediment cores. The second method measured organic carbon density of sediment accumulated above feldspar marker beds. Carbon accumulation rates generated by these two methods were interpolated across emergent wetland areas, using kriging, with uncertainty estimated by leave-one-out cross validation. This spatial analysis revealed greater carbon sequestration within Delaware, compared to Barnegat Bay. Sequestration rates were found to be more variable within Delaware Bay, and rates were greatest in the tidal freshwater area of the upper bay.

2019 ◽  
Vol 124 (11) ◽  
pp. 3652-3671 ◽  
Author(s):  
E. Fay Belshe ◽  
Jose Sanjuan ◽  
Carmen Leiva‐Dueñas ◽  
Nerea Piñeiro‐Juncal ◽  
Oscar Serrano ◽  
...  

2021 ◽  
Vol 759 ◽  
pp. 143535
Author(s):  
Stephen M. Bell ◽  
César Terrer ◽  
Carles Barriocanal ◽  
Robert B. Jackson ◽  
Antoni Rosell-Melé

The Holocene ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 1325-1339 ◽  
Author(s):  
CJ Duffield ◽  
E Alve ◽  
N Andersen ◽  
TJ Andersen ◽  
S Hess ◽  
...  

We investigated spatial and temporal changes in accumulation rate and source of organic carbon on a gradient along the Lysefjord and the more coastal Høgsfjord, Western Norway. This was achieved through analysis of total organic carbon and nitrogen content of sediment cores, which were radiometrically dated to the early 19th and 20th centuries for the Høgsfjord and Lysefjord, respectively. Benthic foraminifera (protists) were utilized to determine changes in organic carbon supply and Ecological Quality Status (EcoQS) by their accumulation rate (benthic foraminiferal accumulation rate (BFAR)), assemblage composition, species diversity, individual species responses and the composition of stable carbon isotopes of the tests (shells) of Cassidulina laevigata, Hyalinea balthica and Melonis barleeanus. Organic carbon accumulation rates were greatest closest to the river Lyse at the head of the Lysefjord (83–171 g C m−2 yr−1). The organic carbon at the head of the fjord is mainly terrestrial in origin, and this terrestrial influence becomes progressively less seaward. The δ13C in H. balthica tests as well as the benthic foraminiferal assemblage composition also showed a clear fjord to coast gradient. Organic carbon accumulation rates were lower and less variable at the seaward study sites (13–61 g C m−2 yr−1). We observe no temporal trend in organic carbon, carbon isotopes, EcoQS or foraminiferal assemblage composition in the Lysefjord. In contrast, in the Høgsfjord, there seems to have been an increase in organic carbon accumulation rates during the 1940s. Subsequent accumulation rates are stable. The foraminiferal assemblages in the surface sediments reflect a recent transition from good/moderate to moderate/bad EcoQS.


2012 ◽  
Vol 39 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Aleksandra Szczepańska ◽  
Agata Zaborska ◽  
Anna Maciejewska ◽  
Karol Kuliński ◽  
Janusz Pempkowiak

Abstract Organic carbon deposited in marine sediments is an important part of the global carbon cycle. The knowledge concerning the role of shelf seas (including the Baltic Sea) in the carbon cycle has increased substantially, however organic carbon accumulation rates in the Baltic sediments still require clarification. This paper describes methods used for assessing organic carbon and nitrogen accumulation rates in six sediment cores collected in the sediment accumulation areas in the Baltic Sea. Mass sediment accumulation rates were based on 210Pb method validated by 137Cs measurements. The organic carbon accumulation rates ranged from 18 to 75 g·C·m−2·yr−1. The C/N ratios and δ13C were used to access sedimentary organic matter provenance. The C/N ratios in the investigated cores vary in the range from 7.4 to 9.6, while δ13C ranged from −24.4‰ to −26.4‰. Results of the terrestrial organic matter contribution in the sedimentary organic matter were calculated basing on δ13C using the end member approach. Large proportion (41–73%) of the sedimentary organic carbon originates on land. The obtained results indicate the Baltic Sea sediments as an important sink for organic carbon. Substantial fraction of the sedimentary load originates on land.


2014 ◽  
Vol 11 (9) ◽  
pp. 13343-13387 ◽  
Author(s):  
J. Schönfeld ◽  
W. Kuhnt ◽  
Z. Erdem ◽  
S. Flögel ◽  
N. Glock ◽  
...  

Abstract. Present day oceans are generally well ventilated except mid-depth oxygen minimum zones (OMZs) under high surface water productivity regimes, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or even anoxic. In particular the Cretaceous Ocean Anoxic Events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossil assemblages preserved in the sedimentary record. Yet both, qualitative and quantitative assessments of intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life are well known. Their implications for constraining past bottom-water oxygenation are addressed in this review, with emphasis on comparing OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the Atlantic NW African shelf. Holocene laminated sediments were encountered at bottom-water oxygen levels of <7 μmol kg−1 under the Peruvian upwelling and <5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Changes of sediment input on seasonal to decadal time scales are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae in sediment cores. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. This ichnogenus has not been reported from Peruvian sediments but cm-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated sections of OAE 2 in the Tarfaya Basin, Morocco, matching late Holocene accumulation rates of the majority of laminated Peruvian sediment cores under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at >10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of paleo-oxygenation under suboxic conditions. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.


2018 ◽  
Vol 14 (10) ◽  
pp. 20180237 ◽  
Author(s):  
Alexander Pérez ◽  
Bruno G. Libardoni ◽  
Christian J. Sanders

There is growing interest in the capacity of mangrove ecosystems to sequester and store ‘blue carbon’. Here, we provide a synthesis of 66 dated sediment cores with previously calculated carbon accumulation rates in mangrove ecosystems to assess the effects of environmental and anthropogenic pressures. Conserved sedimentary environments were found to be within the range of the current global average for sediment accretion (approx. 2.5 mm yr –1 ) and carbon accumulation (approx. 160 g m −2 yr −1 ). Moreover, similar sediment accretion and carbon accumulation rates were found between mixed and monotypic mangrove forests, however higher mean and median values were noted from within the forest as compared to adjacent areas such as mudflats. The carbon accumulation within conserved environments was up to fourfold higher than in degraded or deforested environments but threefold lower than those impacted by domestic or aquaculture effluents (more than 900 g m −2 yr −1 ) and twofold lower than those impacted by storms and flooding (more than 500 g m −2 yr −1 ). These results suggest that depending on the type of impact, the blue carbon accumulation capacity of mangrove ecosystems may become substantially modified.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Grace M. Wilkinson ◽  
Alice Besterman ◽  
Cal Buelo ◽  
Jessica Gephart ◽  
Michael L. Pace

Sign in / Sign up

Export Citation Format

Share Document