scholarly journals Family-specific chemical profiles provide potential kin recognition cues in the sexually cannibalistic spider Argiope bruennichi

2021 ◽  
Vol 17 (8) ◽  
pp. 20210260
Author(s):  
Katharina Weiss ◽  
Jutta M. Schneider

Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi . Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.

Behaviour ◽  
2007 ◽  
Vol 144 (10) ◽  
pp. 1147-1160 ◽  
Author(s):  
Jakob Parzefall ◽  
Rüdiger Riesch ◽  
Ingo Schlupp ◽  
Martin Plath

AbstractPrevious studies revealed that females of a cave form of the livebearing fish Poecilia mexicana (cave molly) have maintained the ancestral visual preference for large males, but — as an adaptation to life in darkness — they have evolved the novel capability to assess male size non-visually. Here we examined the mechanisms by which non-visual mate choice for large body size occurs. Are sex- and species-specific chemical cues involved in this preference for large conspecifics? We gave focal females an opportunity to associate with a large and a small stimulus fish in simultaneous choice tests, whereby the females could perceive either multiple cues (visual plus non-visual) from the stimulus fish, solely non-visual cues in darkness, or solely visual cues. Stimulus fish were two conspecific males, conspecific females, or heterospecific females (Xiphophorus hellerii). Cave molly females showed a significant preference for large conspecific males and for large conspecific females in all treatments. When a large and a small swordtail female were presented, cave molly females showed a preference for the larger fish only when exclusively visual cues from the stimulus fish were available. The non-visual preference for large body size appears to be mediated by species- but not by sex-specific cues, suggesting that species-specific chemical cues play an important role during mate choice.


Author(s):  
Moritz Gerbaulet ◽  
Anton Möllerke ◽  
Katharina Weiss ◽  
Satya Chinta ◽  
Jutta M. Schneider ◽  
...  

AbstractEmerging evidence shows that the cuticular and silk lipids of spiders are structurally more diverse than those of insects, although only a relatively low number of species have been investigated so far. As in insects, such lipids might play a role as signals in various contexts. The wasp spider Argiope bruennichi has probably the best investigated chemical communication system within spiders, including the known structure of the female sex pheromone. Recently we showed that kin-recognition in A. bruennichi could be mediated through the cuticular compounds consisting of hydrocarbons and, to a much larger proportion, of wax esters. By use of mass spectrometry and various derivatization methods, these were identified as esters of 2,4-dimethylalkanoic acids and 1-alkanols of varying chain lengths, such as tetradecyl 2,4-dimethylheptadecanoate. A representative enantioselective synthesis of this compound was performed which proved the identifications and allowed us to postulate that the natural enantiomer likely has the (2R,4R)-configuration. Chemical profiles of the silk and cuticular lipids of females were similar, while male cuticular profiles differed from those of females. Major components of the male cuticular lipids were tridecyl 2,4-dimethyl-C17-19 alkanoates, whereas those of females were slightly longer, comprising tridecyl 2,4-dimethyl-C19-21 alkanoates. In addition, minor female-specific 4-methylalkyl esters were detected.


2011 ◽  
Vol 278 (1723) ◽  
pp. 3403-3411 ◽  
Author(s):  
Paul G. McDonald ◽  
Jonathan Wright

Kin selection predicts that helpers in cooperative systems should preferentially aid relatives to maximize fitness. In family-based groups, this can be accomplished simply by assisting all group members. In more complex societies, where large numbers of kin and non-kin regularly interact, more sophisticated kin-recognition mechanisms are needed. Bell miners ( Manorina melanophrys ) are just such a system where individuals regularly interact with both kin and non-kin within large colonies. Despite this complexity, individual helpers of both sexes facultatively work harder when provisioning the young of closer genetic relatedness. We investigated the mechanism by which such adaptive discrimination occurs by assessing genetic kinship influences on the structure of more than 1900 provisioning vocalizations of 185 miners. These ‘mew’ calls showed a significant, positive linear increase in call similarity with increasing genetic relatedness, most especially in comparisons between male helpers and the breeding male. Furthermore, individual helping effort was more heavily influenced by call similarity to breeding males than to genetic relatedness, as predicted if call similarity is indeed the rule-of-thumb used to discriminate kin in this system. Individual mew call structure appeared to be inflexible and innate, providing an effective mechanism by which helpers can assess their relatedness to any individual. This provides, to our knowledge, the first example of a mechanism for fine-scale kin discrimination in a complex avian society.


Author(s):  
Iris Steitz ◽  
Robert J Paxton ◽  
Stefan Schulz ◽  
Manfred Ayasse

AbstractIn eusocial insects, chemical communication is crucial for mediating many aspects of social activities, especially the regulation of reproduction. Though queen signals are known to decrease ovarian activation of workers in highly eusocial species, little is known about their evolution. In contrast, some primitively eusocial species are thought to control worker reproduction through physical aggression by the queen rather than via pheromones, suggesting the evolutionary establishment of chemical signals with more derived sociality. However, studies supporting this hypothesis are largely missing. Socially polymorphic halictid bees, such as Halictus rubicundus, with social and solitary populations in both Europe and North America, offer excellent opportunities to illuminate the evolution of caste-specific signals. Here we compared the chemical profiles of social and solitary populations from both continents and tested whether (i) population or social level affect chemical dissimilarity and whether (ii) caste-specific patterns reflect a conserved queen signal. Our results demonstrate unique odor profiles of European and North American populations, mainly due to different isomers of n-alkenes and macrocyclic lactones; chemical differences may be indicative of phylogeographic drift in odor profiles. We also found common compounds overproduced in queens compared to workers in both populations, indicating a potential conserved queen signal. However, North American populations have a lower caste-specific chemical dissimilarity than European populations which raises the question if both use different mechanisms of regulating reproductive division of labor. Therefore, our study gives new insights into the evolution of eusocial behavior and the role of chemical communication in the inhibition of reproduction.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10780
Author(s):  
José Martín ◽  
Ernesto Raya-García ◽  
Jesús Ortega ◽  
Pilar López

Kin recognition is a phenomenon with an important function in maintaining cohesive social groups in animals. Several studies have examined parent–offspring recognition in species with direct parental care. Few studies have, however, explored parent–offspring recognition in animals that, at best, only show apparent indirect parental care, such as some reptiles. In this study, we investigated reciprocal parent–offspring recognition in the fossorial amphisbaenian Trogonophis wiegmanni, a viviparous species that shows potential stable ‘family groups’ in the form of parent-offspring long-term associations. We examined whether adult males and females could discriminate via chemical cues between familiar juveniles which associate with them within their family groups, and are potentially their offspring, to that of unfamiliar juveniles, and whether juveniles could discriminate between familiar adult males and females of their family group (probably their parents) and unfamiliar unrelated adults. We measured tongue flick behavior to study chemosensory responses to the scent of conspecifics. We found that adult female amphisbaenians, but not males, could discriminate between scents of familiar and unfamiliar juveniles. Juvenile amphisbaenians did not discriminate between familiar and unfamiliar adult females, but recognize familiar from unfamiliar males. We discuss our results of parent–offspring recognition according to its potential social function in an ecological fossorial context where visibility is limited and chemosensory kin recognition may contribute to the establishment of stable family groups.


2020 ◽  
Vol 31 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Simon Vitt ◽  
Iris Madge Pimentel ◽  
Timo Thünken

Abstract While the importance of kin discrimination, that is, kin recognition and subsequent differential treatment of kin and nonkin, is well established for kin-directed cooperation or altruism, the role of kin discrimination in the context of kin competition and kin avoidance is largely unexplored. Theory predicts that individuals avoiding competition with kin should be favored by natural selection due to indirect fitness benefits. Using an experimental approach, we investigated whether the presence of same-sex kin affects avoidance and explorative behavior in subadult Pelvicachromis taeniatus, a West African cichlid fish with strong intrasexual competition in both sexes. Pelvicachromis taeniatus is capable of recognizing kin using phenotype matching and shows kin discrimination in diverse contexts. When exposed to a same-sex conspecific, both males and females tended to interact less with the related opponent. Moreover, individuals explored a novel environment faster after exposure to kin than to nonkin. This effect was more pronounced in females. Individuals avoiding the proximity of same-sex relatives may reduce kin competition over resources such as mating partners or food.


Sign in / Sign up

Export Citation Format

Share Document