scholarly journals Hyaluronic acid-based scaffold for central neural tissue engineering

2012 ◽  
Vol 2 (3) ◽  
pp. 278-291 ◽  
Author(s):  
Xiumei Wang ◽  
Jin He ◽  
Ying Wang ◽  
Fu-Zhai Cui

Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and many studies have been carried out to develop cell- and regeneration-activating biomaterial scaffolds that create an artificial micro-environment suitable for axonal regeneration. Among all the biomaterials, hyaluronic acid (HA) is a promising candidate for central neural tissue engineering because of its unique physico-chemical and biological properties. This review attempts to outline current biomaterials-based strategies for CNS regeneration from a tissue engineering point of view and discusses the main progresses in research of HA-based scaffolds for central neural tissue engineering in detail.

2012 ◽  
Vol 24 (8) ◽  
pp. 999-1014 ◽  
Author(s):  
Shui Guan ◽  
Xiu-Li Zhang ◽  
Xiao-Min Lin ◽  
Tian-Qing Liu ◽  
Xue-Hu Ma ◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Veronica A. Revkova ◽  
Konstantin V. Sidoruk ◽  
Vladimir A. Kalsin ◽  
Pavel A. Melnikov ◽  
Mikhail A. Konoplyannikov ◽  
...  

Polymers ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 413-426 ◽  
Author(s):  
Yee-Shuan Lee ◽  
Treena Livingston Arinzeh

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 25
Author(s):  
Devindraan Sirkkunan ◽  
Belinda Pingguan-Murphy ◽  
Farina Muhamad

Tissues are commonly defined as groups of cells that have similar structure and uniformly perform a specialized function. A lesser-known fact is that the placement of these cells within these tissues plays an important role in executing its functions, especially for neuronal cells. Hence, the design of a functional neural scaffold has to mirror these cell organizations, which are brought about by the configuration of natural extracellular matrix (ECM) structural proteins. In this review, we will briefly discuss the various characteristics considered when making neural scaffolds. We will then focus on the cellular orientation and axonal alignment of neural cells within their ECM and elaborate on the mechanisms involved in this process. A better understanding of these mechanisms could shed more light onto the rationale of fabricating the scaffolds for this specific functionality. Finally, we will discuss the scaffolds used in neural tissue engineering (NTE) and the methods used to fabricate these well-defined constructs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 952 ◽  
Author(s):  
Li ◽  
Liao ◽  
Tjong

Polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE) with excellent piezoelectricity and good biocompatibility are attractive materials for making functional scaffolds for bone and neural tissue engineering applications. Electrospun PVDF and P(VDF-TrFE) scaffolds can produce electrical charges during mechanical deformation, which can provide necessary stimulation for repairing bone defects and damaged nerve cells. As such, these fibrous mats promote the adhesion, proliferation and differentiation of bone and neural cells on their surfaces. Furthermore, aligned PVDF and P(VDF-TrFE) fibrous mats can enhance neurite growth along the fiber orientation direction. These beneficial effects derive from the formation of electroactive, polar β-phase having piezoelectric properties. Polar β-phase can be induced in the PVDF fibers as a result of the polymer jet stretching and electrical poling during electrospinning. Moreover, the incorporation of TrFE monomer into PVDF can stabilize the β-phase without mechanical stretching or electrical poling. The main drawbacks of electrospinning process for making piezoelectric PVDF-based scaffolds are their small pore sizes and the use of highly toxic organic solvents. The small pore sizes prevent the infiltration of bone and neuronal cells into the scaffolds, leading to the formation of a single cell layer on the scaffold surfaces. Accordingly, modified electrospinning methods such as melt-electrospinning and near-field electrospinning have been explored by the researchers to tackle this issue. This article reviews recent development strategies, achievements and major challenges of electrospun PVDF and P(VDF-TrFE) scaffolds for tissue engineering applications.


Author(s):  
Julie Yeh ◽  
Vivek Mukhatyar ◽  
Ravi Bellamkonda

Sign in / Sign up

Export Citation Format

Share Document