scholarly journals Trophic groups and modules: two levels of group detection in food webs

2015 ◽  
Vol 12 (106) ◽  
pp. 20141176 ◽  
Author(s):  
Benoit Gauzens ◽  
Elisa Thébault ◽  
Gérard Lacroix ◽  
Stéphane Legendre

Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom–top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss.

2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Genome ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 603-628 ◽  
Author(s):  
Tomas Roslin ◽  
Sanna Majaneva

By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems—revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.


2015 ◽  
Author(s):  
Abigail Z. Jacobs ◽  
Jennifer A. Dunne ◽  
Cristopher Moore ◽  
Aaron Clauset

Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether including parasites changes food web structure, with some suggesting that parasitic interactions are structurally distinct from those among free-living species while others claim the opposite. Here, we describe a principled method for understanding food web structure that combines an efficient optimization algorithm from statistical physics called parallel tempering with a probabilistic generalization of the empirically well-supported food web niche model. This generative model approach allows us to rigorously estimate the degree to which interactions that involve parasites are statistically distinguishable from interactions among free-living species, whether parasite niches behave similarly to free-living niches, and the degree to which existing hypotheses about food web structure are naturally recovered. We apply this method to the well-studied Flensburg Fjord food web and show that while predation on parasites, concomitant predation of parasites, and parasitic intraguild trophic interactions are largely indistinguishable from free-living predation interactions, parasite-host interactions are different. These results provide a powerful new tool for evaluating the impact of classes of species and interactions on food web structure to shed new light on the roles of parasites in food webs.


2021 ◽  
Author(s):  
Emanuela Fanelli ◽  
Samuele Menicucci ◽  
Sara Malavolti ◽  
Andrea De Felice ◽  
Iole Leonori

Abstract. Zooplankton are critical to the functioning of ocean food webs because of their utter abundance and vital ecosystem roles. Zooplankton communities are highly diverse and thus perform a variety of ecosystem functions, thus changes in their community or food web structure may provide evidence of ecosystem alteration. Assemblage structure and trophodynamics of mesozooplantkon communities were examined across the Adriatic basin, the northernmost and most productive basin of the Mediterranean Sea. Samples were collected in June–July 2019 along coast-offshore transects covering the whole western Adriatic side, consistently environmental variables were also recorded. Results showed a clear separation between samples from the northern-central Adriatic and the southern ones, with a further segregation, although less clear, of inshore vs. off-shore stations, the latter mostly dominated in the central and southern stations by gelatinous plankton. Such patterns were mainly driven by chlorophyll-a concentration (as a proxy of primary production) for northern-central stations, i.e. closer to the Po river input, and by temperature and salinity, for southern ones, with the DistLM model explaining 46 % of total variance. The analysis of stable isotopes of nitrogen and carbon allowed to identify a complex food web characterized by 3 trophic levels from herbivores to carnivores, passing through the mixed feeding behavior of omnivores, shifting from phytoplankton/detritus ingestion to microzooplankton. Trophic structure also spatially varied according to sub-area, with the northern-central sub-areas differing from each other and from the southern stations. Our results highlighted the importance of environmental variables as drivers of zooplanktonic communities and the complex structure of their food webs. Disentangling and considering such complexity is crucial to generate realistic predictions on the functioning of aquatic ecosystems, especially in high productive and, at the same time, overexploited area such as the Adriatic Sea.


2015 ◽  
Vol 282 (1819) ◽  
pp. 20151589 ◽  
Author(s):  
Alyssa R. Cirtwill ◽  
Daniel B. Stouffer ◽  
Tamara N. Romanuk

Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.


2012 ◽  
Vol 279 (1741) ◽  
pp. 3291-3297 ◽  
Author(s):  
Russell E. Naisbit ◽  
Rudolf P. Rohr ◽  
Axel G. Rossberg ◽  
Patrik Kehrli ◽  
Louis-Félix Bersier

Food webs are the complex networks of trophic interactions that stoke the metabolic fires of life. To understand what structures these interactions in natural communities, ecologists have developed simple models to capture their main architectural features. However, apparently realistic food webs can be generated by models invoking either predator–prey body-size hierarchies or evolutionary constraints as structuring mechanisms. As a result, this approach has not conclusively revealed which factors are the most important. Here we cut to the heart of this debate by directly comparing the influence of phylogeny and body size on food web architecture. Using data from 13 food webs compiled by direct observation, we confirm the importance of both factors. Nevertheless, phylogeny dominates in most networks. Moreover, path analysis reveals that the size-independent direct effect of phylogeny on trophic structure typically outweighs the indirect effect that could be captured by considering body size alone. Furthermore, the phylogenetic signal is asymmetric: closely related species overlap in their set of consumers far more than in their set of resources. This is at odds with several food web models, which take only the view-point of consumers when assigning interactions. The echo of evolutionary history clearly resonates through current food webs, with implications for our theoretical models and conservation priorities.


Food Webs ◽  
2019 ◽  
Vol 21 ◽  
pp. e00123 ◽  
Author(s):  
Sarah M. Laske ◽  
Amanda E. Rosenberger ◽  
Mark S. Wipfli ◽  
Christian E. Zimmerman

2020 ◽  
Vol 31 (3) ◽  
pp. 209-238
Author(s):  
Roy-Ivar Andreassen

Abstract Recent developments in digital technology have revitalized interest in the relationship between technology and management accounting. Yet, few empirical in-depth studies have assessed how digital technologies influence the roles of management accountants. This paper builds on the concept of jurisdiction to illuminate the relationship between management accountants, expert knowledge and digital technology. The study identifies and describes competition over jurisdiction between management accountants and other groups of employees. The study describes a shift for divisional management accountants towards narrower roles in their tasks and expectations, while business-oriented roles at group level are found to entail expanding tasks and expectations. In doing so, management accountants are divided into two divergent categories facing different expectations: divisional and group level management accountants. Through a case study in the technology-oriented finance sector, the paper contributes to the debate on the roles of management accountants in a number of ways. First, it describes how digital technology can contribute to narrower and more specialized roles. Second, it describes how digital technology can contribute to competition between professions. Third, it elucidates how digital technology contributes to changes in the behaviour of decision makers, and in their expectations toward, and the involvement of, management accountants. Fourth, it details how the changes contributed by digital technology in the roles of management accountants can act as mediators in the identity-work of management accountants. Finally, it empirically describes the relationships between digital technology and management accountants’ roles.


Author(s):  
Robert M. Pringle ◽  
Matthew C. Hutchinson

Food webs are a major focus and organizing theme of ecology, but the data used to assemble them are deficient. Early debates over food-web data focused on taxonomic resolution and completeness, lack of which had produced spurious inferences. Recent data are widely believed to be much better and are used extensively in theoretical and meta-analytic research on network ecology. Confidence in these data rests on the assumptions ( a) that empiricists correctly identified consumers and their foods and ( b) that sampling methods were adequate to detect a near-comprehensive fraction of the trophic interactions between species. Abundant evidence indicates that these assumptions are often invalid, suggesting that most topological food-web data may remain unreliable for inferences about network structure and underlying ecological and evolutionary processes. Morphologically cryptic species are ubiquitous across taxa and regions, and many trophic interactions routinely evade detection by conventional methods. Molecular methods have diagnosed the severity of these problems and are a necessary part of the cure.


Paleobiology ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 320-336
Author(s):  
Hannah L. Kempf ◽  
Ian O. Castro ◽  
Ashley A. Dineen ◽  
Carrie L. Tyler ◽  
Peter D. Roopnarine

AbstractA thorough understanding of how communities respond to extreme changes, such as biotic invasions, is essential to manage ecosystems today. Here we constructed fossil food webs to identify changes in Late Ordovician (Katian) shallow-marine paleocommunity structure and functioning before and after the Richmondian invasion, a well-documented ancient invasion. Food webs were compared using descriptive metrics and cascading extinction on graphs models. Richness at intermediate trophic levels was underrepresented when using only data from the Paleobiology Database relative to museum collections, resulting in a spurious decrease in modeled paleocommunity stability. Therefore, museum collections and field sampling may provide more reliable sources of data for the reconstruction of trophic organization in comparison to online data repositories. The invasion resulted in several changes in ecosystem dynamics. Despite topological similarities between pre- and postinvasion food webs, species loss occurred corresponding to a minor decrease in functional groups. Invaders occupied all of the preinvasion functional guilds, with the exception of four incumbent guilds that were lost and one new guild, corroborating the notion that invaders replace incumbents and fill preexisting niche space. Overall, models exhibited strong resistance to secondary extinction, although the postinvasion community had a lower threshold of collapse and more variable response to perturbation. We interpret these changes in dynamics as a decrease in stability, despite similarities in overall structure. Changes in food web structure and functioning resulting from the invasion suggest that conservation efforts may need to focus on preserving functional diversity if more diverse ecosystems are not inherently more stable.


Sign in / Sign up

Export Citation Format

Share Document