scholarly journals Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost

2019 ◽  
Vol 16 (159) ◽  
pp. 20190421 ◽  
Author(s):  
Nabil T. Fadai ◽  
Ruth E. Baker ◽  
Matthew J. Simpson

Understanding how cells proliferate, migrate and die in various environments is essential in determining how organisms develop and repair themselves. Continuum mathematical models, such as the logistic equation and the Fisher–Kolmogorov equation, can describe the global characteristics observed in commonly used cell biology assays, such as proliferation and scratch assays. However, these continuum models do not account for single-cell-level mechanics observed in high-throughput experiments. Mathematical modelling frameworks that represent individual cells, often called agent-based models, can successfully describe key single-cell-level features of these assays but are computationally infeasible when dealing with large populations. In this work, we propose an agent-based model with crowding effects that is computationally efficient and matches the logistic and Fisher–Kolmogorov equations in parameter regimes relevant to proliferation and scratch assays, respectively. This stochastic agent-based model allows multiple agents to be contained within compartments on an underlying lattice, thereby reducing the computational storage compared to existing agent-based models that allow one agent per site only. We propose a systematic method to determine a suitable compartment size. Implementing this compartment-based model with this compartment size provides a balance between computational storage, local resolution of agent behaviour and agreement with classical continuum descriptions.

2019 ◽  
Author(s):  
Nabil T. Fadai ◽  
Ruth E. Baker ◽  
Matthew J. Simpson

AbstractUnderstanding how cells proliferate, migrate, and die in various environments is essential in determining how organisms develop and repair themselves. Continuum mathematical models, such as the logistic equation and the Fisher-Kolmogorov equation, can describe the global characteristics observed in commonly-used cell biology assays, such as proliferation and scratch assays. However, these continuum models do not account for single-cell-level mechanics observed in high-throughput experiments. Mathematical modelling frameworks that represent individual cells, often called agent-based models, can successfully describe key single-cell-level features of these assays, but are computationally infeasible when dealing with large populations. In this work, we propose an agent-based model with crowding effects that is computationally efficient and matches the logistic and Fisher-Kolmogorov equations in parameter regimes relevant to proliferation and scratch assays, respectively. This stochastic agent-based model allows multiple agents to be contained within compartments on an underlying lattice, thereby reducing the computational storage compared to existing agent-based models that allow one agent per site only. We propose a systematic method to determine a suitable compartment size. Implementing this compartment-based model with this compartment size provides a balance between computational storage, local resolution of agent behaviour, and agreement with classical continuum descriptions.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (18) ◽  
pp. 3629-3639 ◽  
Author(s):  
Tríona M. O'Connell ◽  
Damien King ◽  
Chandra K. Dixit ◽  
Brendan O'Connor ◽  
Dermot Walls ◽  
...  

It is now widely recognised that the earliest changes that occur on a cell when it is stressed or becoming diseased are alterations in its surface glycosylation.


2021 ◽  
Vol 18 (176) ◽  
Author(s):  
John T. Nardini ◽  
Ruth E. Baker ◽  
Matthew J. Simpson ◽  
Kevin B. Flores

Agent-based models provide a flexible framework that is frequently used for modelling many biological systems, including cell migration, molecular dynamics, ecology and epidemiology. Analysis of the model dynamics can be challenging due to their inherent stochasticity and heavy computational requirements. Common approaches to the analysis of agent-based models include extensive Monte Carlo simulation of the model or the derivation of coarse-grained differential equation models to predict the expected or averaged output from the agent-based model. Both of these approaches have limitations, however, as extensive computation of complex agent-based models may be infeasible, and coarse-grained differential equation models can fail to accurately describe model dynamics in certain parameter regimes. We propose that methods from the equation learning field provide a promising, novel and unifying approach for agent-based model analysis. Equation learning is a recent field of research from data science that aims to infer differential equation models directly from data. We use this tutorial to review how methods from equation learning can be used to learn differential equation models from agent-based model simulations. We demonstrate that this framework is easy to use, requires few model simulations, and accurately predicts model dynamics in parameter regions where coarse-grained differential equation models fail to do so. We highlight these advantages through several case studies involving two agent-based models that are broadly applicable to biological phenomena: a birth–death–migration model commonly used to explore cell biology experiments and a susceptible–infected–recovered model of infectious disease spread.


2017 ◽  
Author(s):  
Timea Toth ◽  
Tamas Balassa ◽  
Norbert Bara ◽  
Ferenc Kovacs ◽  
Andras Kriston ◽  
...  

AbstractTo answer major questions of cell biology, it is essential to understand cellular complexity. Modern automated microscopes produce vast amounts of images routinely, making manual analysis nearly impossible. Due to their efficiency, machine learning-based analysis software have become essential tools to perform single-cell-level phenotypic analysis of large imaging datasets. However, an important limitation of such methods is that they do not use the information gained from the cellular micro- and macroenvironment: the algorithmic decision is based solely on the local properties of the cell of interest. Here, we present how various microenvironmental features contribute to identifying a cell and how such additional information can improve single-cell-level phenotypic image analysis. The proposed methodology was tested for different sizes of Euclidean and nearest neighbour-based cellular environments both on tissue sections and cell cultures. Our experimental data verify that the microenvironment of a cell largely determines its entity. This effect was found to be especially strong for established tissues, while it was somewhat weaker in the case of cell cultures. Our analysis shows that combining local cellular features with the properties of the cell's microenvironment significantly improves the accuracy of machine learning-based phenotyping.


Sign in / Sign up

Export Citation Format

Share Document