glycan profiling
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 47)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Lalhaba Oinam ◽  
Fumi Minoshima ◽  
Hiroaki Tateno

AbstractBacterial glycans modulate the cross talk between the gut microbiota and its host. However, little is known about these glycans because of the lack of appropriate technology to study them. In this study, we applied Glycan-seq technology for glycan profiling of the intact gut microbiota of mice. The evaluation of cultured gram-positive (Deinococcus radiodurans) and gram-negative (Escherichia coli) bacteria showed significantly distinct glycan profiles between these bacteria, which were selected and further analyzed by flow cytometry. The results of flow cytometry agreed well with those obtained by Glycan-seq, indicating that Glycan-seq can be used for bacterial glycan profiling. We thus applied Glycan-seq for comparative glycan profiling of pups and adult mice gut microbiotas. The glycans of the pups and adult microbiotas had significantly distinct glycan profiles, which reflect the different bacterial compositions of pups and adult gut microbiotas based on 16S rRNA gene sequencing.α2-6Sia-binders bound specifically to the pups microbiota. Lectin pull-down followed by 16S rRNA gene sequencing of the pups microbiota identified Lactobacillaceae as the most abundant bacterial family with glycans reacting with α2-6Sia-binders. The Glycan-seq system can reveal the glycan profile of the intact bacterial gut microbiota.


2021 ◽  
Author(s):  
Ana Cindric ◽  
Frano Vuckovic ◽  
David Koschut ◽  
Vincenzo Borelli ◽  
Julija Juric ◽  
...  

Abstract Cells from people with Down syndrome (DS) show faster accumulation of DNA damage and epigenetic aging marks. Causative mechanisms remain un-proven and hypotheses range from amplified chromosomal instability to actions of several supernumerary chromosome 21 genes. Plasma immunoglobulin G (IgG) glycosylation profiles are established as a reliable predictor of biological and chronological aging. We performed IgG glycan profiling of n=246 individuals with DS (208 adults and 38 children) from three European populations and compared these to age-, sex- and demography-matched general populations. We uncovered very significantly increased IgG glycosylation aging marks associated with DS. Average levels of IgG glycans without galactose (G0) and those with two galactoses (G2) as a function of age in persons with DS corresponded to levels detected in 19 years older euploid individuals. Some aging marks were significant already in children with DS. Remarkably, the IgG glycan profiles of a child with segmental duplication of only 31 genes on chromosome 21 had values similar to those of age-matched DS children, outside the normal children’s range. This is the first non-epigenetic evidence of accelerated systemic biological aging in DS, suggesting it begins very early in childhood. It points to a causative contribution of the overdose of genes in a short segment of chromosome 21, not previously linked to accelerated aging, opening a route to discovery of hitherto unrecognised mechanisms.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1744
Author(s):  
Bastiaan L. Duivelshof ◽  
Steffy Denorme ◽  
Koen Sandra ◽  
Xiaoxiao Liu ◽  
Alain Beck ◽  
...  

The identification and accurate quantitation of the various glycoforms contained in therapeutic monoclonal antibodies (mAbs) is one of the main analytical needs in the biopharmaceutical industry, and glycosylation represents a crucial critical quality attribute (CQA) that needs to be addressed. Currently, the reference method for performing such identification/quantitation consists of the release of the N-glycan moieties from the mAb, their labelling with a specific dye (e.g., 2-AB or RFMS) and their analysis by HILIC-FLD or HILIC-MS. In this contribution, the potential of a new cost- and time-effective analytical approach performed at the protein subunit level (middle-up) was investigated for quantitative purposes and compared with the reference methods. The robustness of the approach was first demonstrated by performing the relative quantification of the glycoforms related to a well characterized mAb, namely adalimumab. Then, the workflow was applied to various glyco-engineered mAb products (i.e., obinutuzumab, benralizumab and atezolizumab). Finally, the glycosylation pattern of infliximab (Remicade®) was assessed and compared to two of its commercially available biosimilars (Remsima® and Inflectra®). The middle-up analysis proved to provide accurate quantitation results and has the added potential to be used as multi-attribute monitoring method.


2021 ◽  
Author(s):  
Y. H. Sun ◽  
G. Luxardi ◽  
G. Xu ◽  
K. Zhu ◽  
B. Reid ◽  
...  

Salmonella invades and disrupts gut epithelium integrity, creating an infection-generated electric field that can drive directional migration of macrophages, a process called galvanotaxis. Phagocytosis of bacteria reverses the direction of macrophage galvanotaxis, implicating a bioelectrical mechanism to initiate life-threatening disseminations. The force that drives direction reversal of macrophage galvanotaxis is not understood. One hypothesis is that Salmonella can alter the electrical properties of the macrophages by modifying host cell surface glycan composition, which is supported by the fact that cleavage of surface-exposed sialic acids with a bacterial neuraminidase severely impairs macrophage galvanotaxis, as well as phagocytosis. Here, we utilize N-glycan profiling by nanoLC-chip QTOF mass cytometry to characterize the bacterial neuraminidase-associated compositional shift of the macrophage glycocalyx, which revealed a decrease in sialylated and an increase in fucosylated and high mannose structures. The Salmonella nanH gene, encoding a putative neuraminidase, is required for invasion and internalization in a human colonic epithelial cell infection model. To determine whether NanH is required for the Salmonella infection-dependent direction reversal, we constructed and characterized a nanH deletion mutant and found that NanH is partially required for Salmonella infection in primary murine macrophages. However, compared to wild type Salmonella , infection with the nanH mutant only marginally reduced the cathode-oriented macrophage galvonotaxis, without canceling direction reversal. Together, these findings strongly suggest that while neuraminidase-mediated N-glycan modification impaired both macrophage phagocytosis and galvanotaxis, yet to be defined mechanisms other than NanH may play a more important role in bioelectrical control of macrophage trafficking, which potentially triggers dissemination.


2021 ◽  
Author(s):  
Yoko Itakura ◽  
Norihiko Sasaki ◽  
Masashi Toyoda

AbstractCell surface glycoproteins, which are good indicators of cellular types and biological function; are suited for cell evaluation. Tissue remodeling using various cells is a key feature of regenerative therapy. For artificial heart remodeling, a mixture of heart constituent cells has been investigated for organ assembly, however, the cellular characteristics remain unclear. In this study, the glycan profiles of human cardiomyocytes (HCMs), human cardiac fibroblasts (HCFs), and human vascular endothelial cells (ECs) were analyzed using evanescent-field lectin microarray analysis, a tool of glycan profiling, to clarify the required cellular characteristics. We found that ECs had more “α1-2fucose” and “core α1-6fucose” residues than other cells, and that “α2-6sialic acid” residue was more abundant in ECs and HCMs than in HCFs. HCFs showed higher abundance of “β-galactose” and “β-N-acetylgalactosamine” residues on N-glycan and O-glycan, respectively, compared to other cells. Interestingly, cardiac glycan profiles were insignificantly changed with cellular senescence. The residues identified in this study may participate in organ maintenance by contributing to the preservation of glycan components. Therefore, future studies should investigate the roles of glycans in optimal tissue remodeling since identifying cellular characteristics is important for the development of regenerative therapies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Calvin R. K. Blaschke ◽  
Jordan P. Hartig ◽  
Grace Grimsley ◽  
Liping Liu ◽  
O. John Semmes ◽  
...  

Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhiwei Xu ◽  
Yaqin Zhang ◽  
Dickson K. W. Ocansey ◽  
Bo Wang ◽  
Fei Mao

Cervical cancer has become the most frequent female malignancy and presents as a general health challenge in many countries undergoing economic development. Various human papillomaviruses (HPV) types have appeared as one of the most critically identifiable causes of widespread cervical cancers. Conventional cervical cytological inspection has limitations of variable sensitivity according to cervical cytology. Glycobiology has been fundamental in related exploration in various gynecologic and reproductive fields and has contributed to our understanding of cervical cancer. It is associated with altered expression of N-linked glycan as well as abnormal expression of terminal glycan structures. The analytical approaches available to determine serum and tissue glycosylation, as well as potential underlying molecular mechanisms involved in the cellular glycosylation alterations, are monitored. Moreover, cellular glycosylation influences various aspects of cervical cancer biology, ranging from cell surface expressions, cell-cell adhesion, cancer signaling, cancer diagnosis, and management. In general, discoveries in glycan profiling make it technically reproducible and affordable to perform serum glycoproteomic analyses and build on previous work exploring an expanded variety of glycosylation markers in the majority of cervical cancer patients.


Sign in / Sign up

Export Citation Format

Share Document