scholarly journals Exit rights open complex pathways to cooperation

2021 ◽  
Vol 18 (174) ◽  
pp. 20200777
Author(s):  
Chen Shen ◽  
Marko Jusup ◽  
Lei Shi ◽  
Zhen Wang ◽  
Matjaž Perc ◽  
...  

We study the evolutionary dynamics of the Prisoner’s Dilemma game in which cooperators and defectors interact with another actor type called exiters. Rather than being exploited by defectors, exiters exit the game in favour of a small pay-off. We find that this simple extension of the game allows cooperation to flourish in well-mixed populations when iterations or reputation are added. In networked populations, however, the exit option is less conducive to cooperation. Instead, it enables the coexistence of cooperators, defectors, and exiters through cyclic dominance. Other outcomes are also possible as the exit pay-off increases or the network structure changes, including network-wide oscillations in actor abundances that may cause the extinction of exiters and the domination of defectors, although game parameters should favour exiting. The complex dynamics that emerges in the wake of a simple option to exit the game implies that nuances matter even if our analyses are restricted to incentives for rational behaviour.

2014 ◽  
Vol 11 (94) ◽  
pp. 20131186 ◽  
Author(s):  
Giulio Cimini ◽  
Angel Sánchez

Cooperative behaviour lies at the very basis of human societies, yet its evolutionary origin remains a key unsolved puzzle. Whereas reciprocity or conditional cooperation is one of the most prominent mechanisms proposed to explain the emergence of cooperation in social dilemmas, recent experimental findings on networked Prisoner's Dilemma games suggest that conditional cooperation also depends on the previous action of the player—namely on the ‘mood’ in which the player is currently in. Roughly, a majority of people behave as conditional cooperators if they cooperated in the past, whereas they ignore the context and free ride with high probability if they did not. However, the ultimate origin of this behaviour represents a conundrum itself. Here, we aim specifically to provide an evolutionary explanation of moody conditional cooperation (MCC). To this end, we perform an extensive analysis of different evolutionary dynamics for players' behavioural traits—ranging from standard processes used in game theory based on pay-off comparison to others that include non-economic or social factors. Our results show that only a dynamic built upon reinforcement learning is able to give rise to evolutionarily stable MCC, and at the end to reproduce the human behaviours observed in the experiments.


2019 ◽  
Vol 3 (1) ◽  
pp. 015011 ◽  
Author(s):  
Xiaofeng Wang ◽  
Guofeng Zhang ◽  
Weijian Kong

1994 ◽  
Vol 04 (01) ◽  
pp. 33-56 ◽  
Author(s):  
MARTIN A. NOWAK ◽  
SEBASTIAN BONHOEFFER ◽  
ROBERT M. MAY

We extend our exploration of the dynamics of spatial evolutionary games [Nowak & May 1992, 1993] in three distinct but related ways. We analyse, first, deterministic versus stochastic rules; second, discrete versus continuous time (see Hubermann & Glance [1993]); and, third, different geometries of interaction in regular and random spatial arrays. We show that spatial effects can change some of the intuitive concepts in evolutionary game theory: (i) equilibria among strategies are no longer necessarily characterised by equal average payoffs; (ii) the strategy with the higher average payoff can steadily converge towards extinction; (iii) strategies can become extinct even though their basic reproductive rate (at very low frequencies) is larger than one. The equilibrium properties of spatial games are instead determined by “local relative payoffs.” We characterise the conditions for coexistence between cooperators and defectors in the spatial prisoner’s dilemma game. We find that cooperation can be maintained if the transition rules give more weight to the most successful neighbours, or if there is a certain probability that cells may remain unoccupied in the next generations when they are surrounded by players with low payoffs. In this second case the cooperators can survive despite a very large payoff advantage to defectors. We also compute average extinction times for random drift in neutral spatial models. Finally we briefly describe the spatial dynamics of an interaction among three species which dominate each other in a cyclic fashion. The emphasis of this paper is presenting a variety of ideas and possibilities for further research in the evolutionary dynamics of spatial games. The overall conclusion is that interactions with local neighbours in 2- or 3-dimensional spatial arrays can promote coexistence of different strategies (such as cooperators and defectors in the Prisoner’s Dilemma), in situations where one strategy would exclude all others if the interactions occurred randomly and homogeneously.


2015 ◽  
Vol 29 (30) ◽  
pp. 1550184
Author(s):  
Hengshan Zong ◽  
Guozhu Jia ◽  
Yang Cheng

Though numerous studies demonstrate the importance of social influence in deciding individual decision-making process in networks, little has been done to explore its impact on players’ behavioral patterns in evolutionary prisoner’s dilemma games (PDGs). This study investigates how social influenced strategy updating rules may affect the final equilibrium of game dynamics. The results show that weak social influence usually inhibits cooperation, while strong social influence has a mediating effect. The impacts of network structure and the existence of rebels in social influence scenarios are also tested. The paper provides a comprehensive interpretation on social influence effects on evolutionary PDGs in networks.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yunkyu Sohn ◽  
Jung-Kyoo Choi ◽  
T K Ahn

Abstract Dense cooperative networks are an essential element of social capital for prosperous societies. These networks enable individuals to overcome collective action dilemmas by enhancing trust. In many biological and social settings, network structures evolve endogenously as agents exit relationships and build new ones. However, the interplay between game strategy and interaction structure by which evolutionary dynamics leads to self-organization of dense cooperative networks has not been understood. Our prisoner’s dilemma experiments with exit and partner choice options show that core–periphery segregation of cooperators and defectors drives the emergence of cooperation. Cooperators’ Quit-for-Tat and defectors’ Roving strategy lead to a highly asymmetric core and periphery structure. Densely connected to each other at the core, cooperators successfully isolate defectors at the periphery and earn larger payoffs.


Games ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 90 ◽  
Author(s):  
John Realpe-Gómez ◽  
Daniele Vilone ◽  
Giulia Andrighetto ◽  
Luis Nardin ◽  
Javier Montoya

In this work, we explore the role of learning dynamics and social norms in human cooperation on networks. We study the model recently introduced in [Physical Review E, 97, 042321 (2018)] that integrates the well-studied Experience Weighted Attraction learning model with some features characterizing human norm psychology, namely the set of cognitive abilities humans have evolved to deal with social norms. We provide further evidence that this extended model—that we refer to as Experience Weighted Attraction with Norm Psychology—closely reproduces cooperative patterns of behavior observed in large-scale experiments with humans. In particular, we provide additional support for the finding that, when deciding to cooperate, humans balance between the choice that returns higher payoffs with the choice in agreement with social norms. In our experiment, agents play a prisoner’s dilemma game on various network structures: (i) a static lattice where agents have a fixed position; (ii) a regular random network where agents have a fixed position; and (iii) a dynamic lattice where agents are randomly re-positioned at each game iteration. Our results show that the network structure does not affect the dynamics of cooperation, which corroborates results of prior laboratory experiments. However, the network structure does seem to affect how individuals balance between their self-interested and normative choices.


Sign in / Sign up

Export Citation Format

Share Document