scholarly journals Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance

2017 ◽  
Vol 4 (9) ◽  
pp. 160889 ◽  
Author(s):  
Liyan Xu ◽  
Fabing Duan ◽  
Xiao Gao ◽  
Derek Abbott ◽  
Mark D. McDonnell

Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman–LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.

2010 ◽  
Vol 15 (2) ◽  
pp. 113-133 ◽  
Author(s):  
Muhammad Zakaria ◽  
Shujat Ali

Using Theil’s inequality coefficient based on the mean square prediction error, this paper evaluates the forecasting efficiency of the central government budget and revised budget estimates in Pakistan for the period 1987/88 to 2007/08 and decomposes the errors into biasedness, unequal variation and random components to analyze the source of error. The results reveal that budgetary forecasting is inefficient in Pakistan and the error is due mainly to exogenous variables (random factors). We also find that neither the budget nor revised budget estimates of revenue and expenditure satisfy the criteria of rational expectations of forecasting. Further, there is very little evidence of improvement in the efficiency of budgetary forecasts over time.


2012 ◽  
Vol 239-240 ◽  
pp. 1395-1398
Author(s):  
Yan Ju Wang ◽  
Li Kun Yang ◽  
Yu Tian Wang

In mine environmental monitoring system, the concentration of mine gas is an important indicator. Aiming at the redundant information from multi-gas sensors in the measurement system, adaptive weighted fusion algorithm was presented. Using this algorithm, it was unnecessary to be aware of any pre-defined knowledge about these datas measured by the sensors. That the algorithm could adjust the fused sensor’s weight in time according to the variation in sensors’ variances makes the mean square error minimal. It was also proved theoretically that this fusion algorithm is linear and unbiased, in respect of the least mean square errors. Simulation results showed that this fusion algorithm is effective and the result of fused data is superior to the mean estimate algorithm in respect of accuracy and fault tolerance.


2005 ◽  
Vol 05 (03) ◽  
pp. L457-L468 ◽  
Author(s):  
MARK D. MCDONNELL ◽  
NIGEL G. STOCKS ◽  
CHARLES E. M. PEARCE ◽  
DEREK ABBOTT

Signal quantization in the presence of independent, identically distributed, large amplitude threshold noise is examined. It has previously been shown that when all quantization thresholds are set to the same value, this situation exhibits a form of stochastic resonance known as suprathreshold stochastic resonance. This means the optimal quantizer performance occurs for a small input signal-to-noise ratio. Here we examine the performance of this stochastic quantization in terms of both mutual information and mean square error distortion. It is also shown that for low input signal-to-noise ratios that the case of all thresholds being identical provides the optimal mean square error distortion performance for the given noise conditions.


Geophysics ◽  
1979 ◽  
Vol 44 (9) ◽  
pp. 1588-1589
Author(s):  
Yoich Ohta ◽  
Masanori Saito

Gangi and Shapiro (1977) proposed a recursive algorithm for determining coefficients of least‐squares polynomials. The algorithm is simpler and more efficient than Trench’s (1965) algorithm or Phillips’ (1971) triangular decomposition algorithm and has an advantage that by monitoring the mean‐square errors at each iteration we can find an optimum order of polynomial fit. We have tried their algorithm and encountered a difficulty. It may be worth recording the source of the difficulty.


1968 ◽  
Vol 58 (5) ◽  
pp. 1573-1582
Author(s):  
J. V. Poppitz

Abstract Velocity and displacement time histories which are derived by integrating acceleration time histories of nuclear-explosion-induced earth tremors usually end in values that are obviously too large. It can be demonstrated that small errors, which are within the range of error one would expect from field-recorded data, could cause such unacceptable velocities and displacements. Assuming that such errors do exist but realizing that they cannot be determined exactly, two “correction” procedures are presented which adjust the acceleration data so that it is more rational. The two procedures are the least-mean-square-velocity technique (by G. V. Berg and G. W. Housner and used extensively with seismic data), which is based on the criterion of minimizing the mean of the velocity squared, and the end-time-zero technique, which depends on boundary conditions at the beginning and end of the tremor. The end-time-zero technique is recommended for use with nuclear-explosion-induced data.


2009 ◽  
Author(s):  
Δημήτριος Αμπελιώτης

Οι πρόσφατες εξελίξεις στις ασύρματες επικοινωνίες και στα ηλεκτρονικά κυκλώματα έχουν επιτρέψει την ανάπτυξη υπολογιστικών διατάξεων χαμηλού κόστους και χαμηλής κατανάλωσης ισχύος, οι οποίες ενσωματώνουν δυνατότητες μέτρησης (sensing), επεξεργασίας και ασύρματης επικοινωνίας. Οι διατάξεις αυτές, οι οποίες έχουν ιδιαίτερα μικρό μέγεθος, καλούνται κόμβοι αισθητήρες. Ένα ασύρματο δίκτυο κόμβων αισθητήρων αποτελείται από ένα πλήθος κόμβων οι οποίοι έχουν αναπτυχθεί σε κάποια περιοχή ενδιαφέροντος προκειμένου να μετρούν κάποια μεταβλητή του περιβάλλοντος. Ανάμεσα σε πολλές εφαρμογές, ο εντοπισμός και η παρακολούθηση των θέσεων πηγών οι οποίες εκπέμπουν κάποιο σήμα (π.χ. ακουστικό, ηλεκτρομαγνητικό) αποτελεί ένα πολύ ενδιαφέρον θέμα, το οποίο μάλιστα μπορεί να χρησιμοποιηθεί και ως βάση για τη μελέτη άλλων προβλημάτων τα οποία εμφανίζονται στα ασύρματα δίκτυα αισθητήρων. Οι περισσότερες από τις υπάρχουσες τεχνικές εντοπισμού θέσης μιας πηγής από μια συστοιχία αισθητήρων μπορούν να ταξινομηθούν σε δυο κατηγορίες: (α) Τις τεχνικές οι οποίες χρησιμοποιούν μετρήσεις διεύθυνσης άφιξης (Direction of Arrival, DOA) και (β) τις τεχνικές οι οποίες χρησιμοποιούν μετρήσεις διαφοράς χρόνων άφιξης (Time Difference of Arrival, TDOA). Ωστόσο, οι τεχνικές αυτές απαιτούν υψηλό ρυθμό δειγματοληψίας και ακριβή συγχρονισμό των κόμβων και δε συνάδουν έτσι με τις περιορισμένες ικανότητες των κόμβων αισθητήρων. Για τους λόγους αυτούς, το ενδιαφέρον έχει στραφεί σε μια τρίτη κατηγορία τεχνικών οι οποίες χρησιμοποιούν μετρήσεις ισχύος (Received Signal Strength, RSS). Το πρόβλημα του εντοπισμού θέσης χρησιμοποιώντας μετρήσεις ισχύος είναι ένα πρόβλημα εκτίμησης, όπου οι μετρήσεις συνδέονται με τις προς εκτίμηση παραμέτρους με μη-γραμμικό τρόπο. Στα πλαίσια της Διδακτορικής Διατριβής ασχολούμαστε αρχικά με την περίπτωση όπου επιθυμούμε να εκτιμήσουμε τη θέση και την ισχύ μιας πηγής χρησιμοποιώντας μετρήσεις ισχύος οι οποίες φθίνουν με βάση το αντίστροφο του τετραγώνου της απόστασης ανάμεσα στην πηγή και το σημείο μέτρησης. Για το πρόβλημα αυτό, προτείνουμε έναν εκτιμητή ο οποίος δίνει τις παραμέτρους της πηγής ως λύση ενός γραμμικού προβλήματος ελαχίστων τετραγώνων. Στη συνέχεια, υπολογίζουμε κατάλληλα βάρη και προτείνουμε έναν εκτιμητή ο οποίος δίνει τις παραμέτρους της πηγής ως λύση ενός προβλήματος ελαχίστων τετραγώνων με βάρη. Ακόμα, τροποποιούμε κατάλληλα τον τελευταίο εκτιμητή έτσι ώστε να είναι δυνατή η κατανεμημένη υλοποίησή του μέσω των προσαρμοστικών αλγορίθμων Least Mean Square (LMS) και Recursive Least Squares (RLS). Στη συνέχεια, εξετάζουμε την περίπτωση όπου ενδιαφερόμαστε να εκτιμήσουμε τη θέση μιας πηγής αλλά δεν έχουμε καμιά πληροφορία σχετικά με το μοντέλο εξασθένισης της ισχύος. Έτσι, υποθέτουμε πως αυτό περιγράφεται από μια άγνωστη γνησίως φθίνουσα συνάρτηση της απόστασης. Αρχικά, προσεγγίζουμε το πρόβλημα εκτίμησης κάνοντας την υπόθεση πως οι θέσεις των κόμβων αποτελούν τυχαία σημεία ομοιόμορφα κατανεμημένα στο επίπεδο. Χρησιμοποιώντας την υπόθεση αυτή, υπολογίζουμε εκτιμήσεις για τις αποστάσεις ανάμεσα στους κόμβους και την πηγή, και αναπτύσσουμε έναν αλγόριθμο εκτίμησης της θέσης της πηγής. Στη συνέχεια, προσεγγίζουμε το πρόβλημα εκτίμησης χωρίς την υπόθεση περί ομοιόμορφης κατανομής των θέσεων των κόμβων στο επίπεδο. Προτείνουμε μια κατάλληλη συνάρτηση κόστους για την περίπτωση αυτή, και δείχνουμε την ύπαρξη μιας συνθήκης υπό την οποία η βέλτιστη λύση μπορεί να υπολογιστεί. Η λύση αυτή είναι εσωτερικό σημείο ενός κυρτού πολυγώνου, το οποίο ονομάζουμε ταξινομημένο τάξης-K κελί Voronoi. Έτσι, δίνουμε αλγορίθμους υπολογισμού της λύσης αυτής, καθώς και κατανεμημένους αλγορίθμους οι οποίοι βασίζονται σε προβολές σε κυρτά σύνολα. Ακόμα, ασχολούμαστε με τις ιδιότητες των κελιών αυτών στην περίπτωση όπου οι θέσεις των κόμβων αισθητήρων είναι ομοιόμορφα κατανεμημένες στο επίπεδο και υπολογίζουμε κάποια φράγματα για το εμβαδόν τους. Τέλος, ασχολούμαστε με την περίπτωση όπου ενδιαφερόμαστε να εκτιμήσουμε τις θέσεις πολλαπλών πηγών με γνωστό μοντέλο εξασθένισης της ισχύος. Για το πρόβλημα αυτό, αρχικά προτείνουμε έναν αλγόριθμο διαδοχικής εκτίμησης και ακύρωσης της συνεισφοράς κάθε πηγής, προκειμένου να υπολογιστούν σταδιακά οι θέσεις όλων των πηγών. Ο αλγόριθμος αυτός, αποτελείται από τρία βήματα κατά τα οποία πρώτα υπολογίζεται μια προσεγγιστική θέση για την πηγή, στη συνέχεια εκτιμάται ένα σύνολο κόμβων το οποίο δέχεται μικρής έντασης παρεμβολή από τις υπόλοιπες πηγές, και τέλος επιχειρείται μια λεπτομερέστερη εκτίμηση της θέσης κάθε πηγής. Στη συνέχεια, επεκτείνοντας την τεχνική αυτή, προτείνουμε έναν επαναληπτικό αλγόριθμο εκτίμησης ο οποίος βασίζεται στον αλγόριθμο εναλλασσόμενων προβολών (Alternating Projections). Εξετάζουμε επίσης μεθόδους οι οποίες οδηγούν στη μείωση της υπολογιστικής πολυπλοκότητας του αλγορίθμου αυτού.


2016 ◽  
Vol 41 (4) ◽  
pp. 731-739 ◽  
Author(s):  
Dariusz Bismor ◽  
Marek Pawelczyk

AbstractThe Least Mean Square (LMS) algorithm and its variants are currently the most frequently used adaptation algorithms; therefore, it is desirable to understand them thoroughly from both theoretical and practical points of view. One of the main aspects studied in the literature is the influence of the step size on stability or convergence of LMS-based algorithms. Different publications provide different stability upper bounds, but a lower bound is always set to zero. However, they are mostly based on statistical analysis. In this paper we show, by means of control theoretic analysis confirmed by simulations, that for the leaky LMS algorithm, a small negative step size is allowed. Moreover, the control theoretic approach alows to minimize the number of assumptions necessary to prove the new condition. Thus, although a positive step size is fully justified for practical applications since it reduces the mean-square error, knowledge about an allowed small negative step size is important from a cognitive point of view.


1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2003 ◽  
Vol 14 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Maurizio Magarini ◽  
Arnaldo Spalvieri ◽  
Guido Tartara

Sign in / Sign up

Export Citation Format

Share Document