scholarly journals Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards

2017 ◽  
Vol 4 (3) ◽  
pp. 170117 ◽  
Author(s):  
A. Rombaut ◽  
R. Guilhot ◽  
A. Xuéreb ◽  
L. Benoit ◽  
M. P.  Chapuis ◽  
...  

How do invasive pests affect interactions between members of pre-existing agrosystems? The invasive pest Drosophila suzukii is suspected to be involved in the aetiology of sour rot, a grapevine disease that otherwise develops following Drosophila melanogaster infestation of wounded berries. We combined field observations with laboratory assays to disentangle the relative roles of both Drosophila in disease development. We observed the emergence of numerous D. suzukii , but no D. melanogaster flies, from bunches that started showing mild sour rot symptoms days after field collection. However, bunches that already showed severe rot symptoms in the field mostly contained D. melanogaster . In the laboratory, oviposition by D. suzukii triggered sour rot development. An independent assay showed the disease increased grape attractiveness to ovipositing D. melanogaster females. Our results suggest that in invaded vineyards, D. suzukii facilitates D. melanogaster infestation and, consequently, favours sour rot outbreaks. Rather than competing with close species, the invader subsequently permits their reproduction in otherwise non-accessible resources and may cause more frequent, or more extensive, disease outbreaks.

2021 ◽  
Vol 485 ◽  
pp. 118942
Author(s):  
Alberto Maceda-Veiga ◽  
Sergio Albacete ◽  
Miguel Carles-Tolrá ◽  
Juli Pujade-Villar ◽  
Jan Máca ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


2021 ◽  
Author(s):  
Nikolay P. Kandul ◽  
Esther J. Belikoff ◽  
Junru Liu ◽  
Anna Buchman ◽  
Fang Li ◽  
...  

AbstractOriginally from Asia,Drosophila suzukii(Matsumura, 1931, Diptera:Drosophilidae) is presently a global pest of economically important soft-skinned fruits. Also commonly known as spotted wingDrosophila(SWD), it is largely controlled through repeated applications of broad-spectrum insecticides. There is a pressing need for a better understanding of SWD biology and for developing alternative environmentally-friendly methods of control. The RNA-guided Cas9 nuclease has revolutionized functional genomics and is an integral component of several recently developed genetic strategies for population control of insects. Here we have developed transgenic strains that encode three different terminators and four different promoters to express Cas9 in both the soma and/or germline of SWD. The Cas9 lines were evaluated through genetic crossing to transgenic lines that encode single guide RNAs targeting the conserved X-linkedyellowbody andwhiteeye genes. We find that several Cas9/gRNA lines display very high editing capacity. Going forward, these tools will be instrumental for evaluating gene function in SWD and may provide tools useful for the development of new genetic strategies for control of this invasive species.


2020 ◽  
Author(s):  
Yongzhuo Chen ◽  
Min Zhang ◽  
Wei Hu ◽  
Jing Li ◽  
Pengcheng Liu ◽  
...  

Abstract Background Drosophila suzukii is widely distributed. Research has revealed that the presence of Drosophila melanogaster can reduce the emergence and egg laying of D. suzukii. However, the reasons for these phenomena have not yet been reported. To investigate this issue, we sought to answer three questions: Can the presence of D. melanogaster reduce the longevity of D. suzukii? Does D. melanogaster dominate in larval interspecific competition with D. suzukii? Does reproductive interference occur between these species; i.e., do individuals of one species (e.g., D. suzukii) engage in reproductive activities with individuals of the other (e.g., D. melanogaster) such that the fitness of one or both species is reduced? Results The results showed that the adult offspring number of Drosophila suzukii was significantly reduced when this species was reared with Drosophila melanogaster. The larval interspecific competition had no significant effects on Drosophila suzukii longevity or population size. Surprisingly, Drosophila melanogaster imposed reproductive interference on males of Drosophila suzukii, which led to a significant decline in the rate of successful mating of the latter species. Conclusions The presence of Drosophila melanogaster causes the population size of Drosophila suzukii to decrease through reproductive interference, and the rate of successful mating in Drosophila suzukii is significantly reduced in the presence of Drosophila melanogaster.


2020 ◽  
Vol 173 ◽  
pp. 107389 ◽  
Author(s):  
Nils Hiebert ◽  
Tessa Carrau ◽  
Merle Bartling ◽  
Andreas Vilcinskas ◽  
Kwang-Zin Lee

2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Fernanda Colombari ◽  
Lorenzo Tonina ◽  
Andrea Battisti ◽  
Nicola Mori

Abstract Survival and parasitism activity of Trichopria drosophilae Perkins adults, a cosmopolitan parasitoid of Drosophila spp., were studied under laboratory conditions using five constant temperatures at the lower range known for this enemy, from 4 to 20°C in 4°C increments. Drosophila suzukii Matsumura, an invasive pest of small fruits, was used as a host. Commercially available adult parasitoids were provided with 1) food and D. suzukii pupae; 2) food and no D. suzukii pupae; 3) no food and no pupae. The results show that adult females of T. drosophilae lived longer than males, and both generally benefitted from food supply. The highest level of survival was observed between 8 and 12°C for fed insects, irrespective of whether they were offered host pupae or not. The absence of food led to the highest mortality, but the parasitoid demonstrated considerably resistance to prolonged starvation. Successful parasitism increased steadily with temperature and reached the highest value at 20°C. Conversely, D. suzukii emergence rate was high after exposure of pupae to parasitoids at 4°C, while pupal mortality increased strongly with temperature until 12°C. The findings indicate that T. drosophilae is well adapted to the relatively cold conditions experienced in early spring and in autumn or at high elevations, when the host pupae could be largely available. The long lifespan of the adults and the ability to parasitize the host at low temperature make T. drosophilae potentially useful for the biocontrol of D. suzukii.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael A Reeve ◽  
M Lukas Seehausen

Abstract The fruit fly Drosophila suzukii has recently become an invasive pest insect of significant economic impact in Europe and the USA. In contrast to other Drosophila species, D. suzukii is able to infest intact fruit by means of a saw-like ovipositor, which allows females to deposit eggs beneath the skin of the fruit. Classical biological control using the parasitoid wasp Ganaspis cf. brasiliensis is currently being researched as an environmentally sustainable option for the control of D. suzukii. In particular, the host specificity of this parasitoid has been assessed for populations from different regions in China and Japan. In order to study the relationship between the differences in specificity and molecular variations, we have adapted a matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based method, originally developed for use with plant material, to discriminate between example populations of G. cf. brasiliensis. We have employed a combination of principal component analysis and blind-tested comparison between reference sample MALDI-TOF MS spectra and test sample spectra to discriminate, on the basis of the acid-soluble insect protein spectra generated, between four populations of G. cf. brasiliensis (originally collected from Tokyo and Hasuike in Japan and Dali and Ximing in China). MALDI-TOF MS analysis is able to discriminate with 100% accuracy between populations G. cf. brasiliensis. The Chinese populations were observed to be similar, but the Tokyo population is slightly different and the Hasuike population is significantly different from the other populations. The Tokyo population appears more closely related to the Chinese populations than the Hasuike population, even though both originate from Japan.


Sign in / Sign up

Export Citation Format

Share Document