scholarly journals The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.

2019 ◽  
Vol 112 (5) ◽  
pp. 2287-2294 ◽  
Author(s):  
Dominique N Ebbenga ◽  
Eric C Burkness ◽  
William D Hutchison

Abstract Spotted-wing drosophila, Drosophila suzukii (Matsumura), an economically damaging invasive species of numerous fruit crops, was first detected in Minnesota in 2012. High fecundity, and short generation times facilitated a rapid rise in the global pest status of D. suzukii, particularly in North America and Europe. To date, the majority of crop injury research has focused on fruit crops such as blueberries, raspberries, and cherries. However, little is known regarding the impact of D. suzukii on the wine grape industry in the upper Midwest region of the United States. Field trials were conducted in Minnesota during the summers of 2017–2018 to examine season-long phenology of D. suzukii in wine grape vineyards and wineries, and to assess the efficacy of exclusion netting for control of D. suzukii. Four treatments were evaluated, 1) open plot check (control), 2) open plot treated with an insecticide, 3) exclusion netting, and 4) exclusion netting, with artificial infestations of D. suzukii adults. Exclusion netting was applied at véraison and removed at harvest. On each sample date, 20 berries (10 intact and 10 injured) were collected from each plot for dissection. The number of larvae and adults were recorded for each berry to determine infestation levels. As shown by mean larval infestations and injured berries across treatments, exclusion netting provided a significant reduction in the level of D. suzukii infested berries when compared with the untreated check. These results indicate that exclusion netting could provide an effective alternative management strategy for D. suzukii in wine grapes.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 145 ◽  
Author(s):  
Aurore Panel ◽  
Laura Zeeman ◽  
Bart Van der Sluis ◽  
Peter Van Elk ◽  
Bart Pannebakker ◽  
...  

The mechanisms allowing the widespread invasive pest Drosophila suzukii to survive from early spring until the availability of the first fruit crops are still unclear. Seasonal biology and population dynamics of D. suzukii were investigated in order to better understand the contribution of the early spring hosts to the infestation of the first fruit crops of the season. We identified hosts available to D. suzukii in early spring and assessed their suitability for the pest oviposition and reproductive success under field and laboratory conditions. The natural infestation rate of one of these hosts, Aucuba japonica, was assessed over springtime and the morphology of the flies that emerged from infested A. japonica fruits was characterized under field conditions. Then, these findings were correlated with long-term monitoring data on seasonal reproductive biology and morphology of the pest, using a cumulative degree-days (DD) analysis. Field sampling revealed that overwintered D. suzukii females were physiologically able to lay eggs at 87 DD which coincided with the detection of the first infested early spring hosts. The latter were continuously and increasingly infested by D. suzukii eggs in nature from early spring until the end of May, in particular Aucuba japonica. Individuals emerged from most of these hosts were characterized by a poor fitness and a rather low success of emergence. In the field, only few summer morphs emerged from naturally infested A. japonica fruits around the end of May-beginning of June. However, field monitoring in orchards revealed that D. suzukii individuals consisted solely of winter morphs until mid-June. These observations indicate that overwintered D. suzukii females are the predominant source for the infestations in the first available fruit crops of the season. We discuss these findings in the context of possible pest control strategies.


Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 196 ◽  
Author(s):  
Bethan Shaw ◽  
Sebastian Hemer ◽  
Madeleine F. L. Cannon ◽  
Francesco Rogai ◽  
Michelle T. Fountain

Drosophila suzukii Matsumura is a damaging invasive pest of sweet cherry. Using a series of laboratory leaf contact assays, semi-field, and orchard spray programs we aimed to determine the impact of insecticide programs on D. suzukii adult mortality and oviposition in cladding-protected sweet cherry crops. Tests included assessing adult D. suzukii mortality after contact with leaves sprayed either one or two weeks previously and emergence of adults from fruits. Spinosad, lambda-cyhalothrin, acetamiprid, lime, pyrethrin, deltamethrin, and cyantraniliprole all reduced fruit damage up to day 7 after application. Of these active ingredients, only spinosad, lambda-cyhalothrin, and cyantraniliprole gave satisfactory control up to 14 days. There was no significant difference in D. suzukii mortality when exposed to leaves treated either one or two weeks previously with an application of either spinosad, cyantraniliprole, or lambda-cyhalothrin; however, mortality was significantly higher than D. suzukii in contact with untreated leaves. In eight commercial orchards, fortnightly spray applications including spinosad, cyantraniliprole, and lambda-cyhalothrin gave effective control of D. suzukii until harvest with very few damaged fruits. These experiments demonstrate that currently approved plant protection products, applied to sweet cherry under protection, give at least two weeks protection from D. suzukii.


2008 ◽  
Vol 48 (12) ◽  
pp. 1506 ◽  
Author(s):  
T. J. Ridsdill-Smith ◽  
A. A. Hoffmann ◽  
G. P. Mangano ◽  
J. M. Gower ◽  
C. C. Pavri ◽  
...  

The redlegged earth mite, Halotydeus destructor, continues to be an intractable pest causing damage to most crop and pasture species in southern Australia. H. destructor feed on all stages of plants, but particularly damage seedlings in autumn. Research has aimed to develop new controls based on a better understanding of the biology and ecology of this pest. Chemicals remain the key tool to control H. destructor, despite the recent appearance of resistance to synthetic pyrethroids. A control package, Timerite, has been developed by which a single well-timed spray in spring can prevent H. destructor from developing diapause eggs. Field trials show this strategy provides effective control of H. destructor the following autumn, and protects plant seedlings, although mite populations build up again during winter. Non-chemical control strategies include grazing, the use of tolerant plants such as cereals, resistant legume cultivars and avoiding rotations where favourable host plants are available in the year before growing susceptible crops such as canola. Natural enemies can assist in mite control, and their numbers can be enhanced by methods including increasing landscape features like shelterbelts. Interspecific competition can occur between H. destructor and other pest mites, but the extent to which these interactions influence the structure of pest communities under different management regimes remains to be investigated.


Pertussis ◽  
2018 ◽  
pp. 6-25
Author(s):  
Pejman Rohani ◽  
Samuel V. Scarpino

Resolving the long-term, population-level consequences of changes in pertussis epidemiology, arising from bacterial evolution, shifts in vaccine-induced immunity, or changes in surveillance, are key challenges for devising effective control strategies. This chapter reviews some of the key features of pertussis epidemiology, together with the underlying epidemiological principles that set the context for their interpretation. These include the relationship between the age distribution of cases and pertussis transmission potential, the impact of vaccine uptake on incidence, periodicity and age incidence, as well as spatially explicit recurrent pertussis epidemics and associated extinction frequency. This review highlights some of the predictable and consistent aspects of pertussis epidemiology (e.g. the systematic increase in the inter-epidemic period with the introduction of whole-cell vaccines) and a number of important heterogeneities, including variations in contemporary patterns of incidence and geographic spread.


2016 ◽  
Vol 109 (3) ◽  
pp. 1071-1078 ◽  
Author(s):  
J Cossentine ◽  
M Robertson ◽  
D Xu

Abstract Whole-culture extracts of Bacillus thuringiensis Berliner strains were assayed against larval and adult Drosophila suzukii (Matsumura), an important invasive pest of many thin-skinned soft fruit crops in North America. Of the 22 serovars tested versus larval D. suzukii , strains of Bacillus thuringiensis var. thuringiensis , kurstaki , thompsoni , bolivia , and pakistani caused high (75 to 100%) first-instar mortalities. Pupal mortality, measured as a failure of adults to emerge, varied with serovar. The first D. suzukii instar was the most susceptible of the three larval instars to B. thuringiensis var. kurstaki HD-1. Larval D. suzukii are shielded from crop treatments, as they develop under the skin of infested fruit, and adults would be a more vulnerable target for an efficacious strain of B. thuringiensis . Only one of the 21 B. thuringiensis serovars, var. thuringiensis , prepared as oral suspensions in sucrose for adult D. suzukii ingestion resulted in significant, albeit low mortality within 7 d. It is not a candidate for use in pest management, as it produces β -exotoxin that is toxic to vertebrates.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1894
Author(s):  
Jaeyoung Choi

Finding hidden infected nodes is extremely important when information or diseases spread rapidly in a network because hints regarding the global properties of the diffusion dynamics can be provided, and effective control strategies for mitigating such spread can be derived. In this study, to understand the impact of the structure of the underlying network, a cascade infection-recovery problem is considered over an Erdös-Rényi (ER) random graph when a subset of infected nodes is partially observed. The goal is to reconstruct the underlying cascade that is likely to generate these observations. To address this, two algorithms are proposed: (i) a Neighbor-based recovery algorithm (NBRA(α)), where 0≤α≤1 is a control parameter, and (ii) a BFS tree-source-based recovery algorithm (BSRA). The first one simply counts the number of infected neighbors for candidate hidden cascade nodes and computes the possibility of infection from the neighbors by controlling the parameter α. The latter estimates the cascade sources first and computes the infection probability from the sources. A BFS tree approximation is used for the underlying ER random graph with respect to the sources for computing the infection probability because of the computational complexity in general loopy graphs. We then conducted various simulations to obtain the recovery performance of the two proposed algorithms. As a result, although the NBRA(α) uses only local information of the neighboring infection status, it recovers the hidden cascade infection well and is not significantly affected by the average degree of the ER random graph, whereas the BSRA works well on a local tree-like structure.


Author(s):  
Qimin Huang ◽  
David Gurarie ◽  
Martial Ndeffo-Mbah ◽  
Emily Li ◽  
Charles H King

Abstract Background A seasonal transmission environment including seasonal variation of snail population density and human-snail contact patterns can affect the dynamics of Schistosoma infection and the success of control interventions. In projecting control outcomes, conventional modeling approaches have often ignored seasonality by using simplified intermediate-host modeling, or by restricting seasonal effects through use of yearly averaging. Methods We used mathematical analysis and numerical simulation to estimate the impact of seasonality on disease dynamics and control outcomes, and to evaluate whether seasonal averaging or intermediate-host reduction can provide reliable predictions of control outcomes. We also examined whether seasonality could be used as leverage in creation of effective control strategies. Results We found models that used seasonal averaging could grossly overestimate infection burden and underestimate control outcomes in highly seasonal environments. We showed that proper intra-seasonal timing of control measures could make marked improvement on the long-term burden reduction for Schistosoma transmission control, and we identified the optimal timing for each intervention. Seasonal snail control, implemented alone, was less effective than mass drug administration, but could provide additive impact in reaching control and elimination targets. Conclusion Seasonal variation makes Schistosoma transmission less sustainable and easier to control than predicted by earlier modeling studies.


2012 ◽  
Vol 3 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Hannah J. Burrack ◽  
J. Powell Smith ◽  
Douglas G. Pfeiffer ◽  
Glen Koeher ◽  
Joseph Laforest

2020 ◽  
Vol 152 (4) ◽  
pp. 432-449
Author(s):  
William Champagne-Cauchon ◽  
Jean-Frédéric Guay ◽  
Valérie Fournier ◽  
Conrad Cloutier

AbstractDrosophila suzukii (Matsumura) (Diptera: Drosophilidae), the spotted-wing drosophila, is an invasive pest of fruit crops, which appeared in eastern Canada in 2010. It represents a major threat to lowbush blueberry (Vaccinium angustifolium Aiton; Ericaceae) in the Saguenay-Lac-Saint-Jean region, Québec, Canada, at the northern limits of its distribution. The dynamics, overwintering capacity, population fluctuations, and damage to lowbush blueberry of D. suzukii are unknown in Saguenay-Lac-Saint-Jean. We aimed to 1) document D. suzukii abundance and phenology in lowbush blueberry in separate localities; 2) evaluate the potential of D. suzukii to overwinter and examine population dynamics over three seasons; and 3) study the spatial distribution of D. suzukii in lowbush blueberry fields with respect to forested borders. Drosophila suzukii is abundant in lowbush blueberry fields of Saguenay-Lac-Saint-Jean. In spring, D. suzukii were absent until late June, when few summer-morph females appeared. Drosophila suzukii densities started to increase regularly in August, with increasing male proportions, to culminate in fall at high levels with balanced sex ratios. Overwintering remains uncertain, D. suzukii being undetectable in spring despite intensive trapping. Appearance of diapausing winter morphs at high densities indicates that D. suzukii responds appropriately to local conditions preceding cold winter. Models of variation of D. suzukii densities and lowbush blueberry fruit infestation with distance from borders indicate that forest borders are favoured habitats over lowbush blueberry fields and the source of D. suzukii moving to some extent into lowbush blueberry fields.


Sign in / Sign up

Export Citation Format

Share Document