scholarly journals Colonization of weakened trees by mass-attacking bark beetles: no penalty for pioneers, scattered initial distributions and final regular patterns

2018 ◽  
Vol 5 (1) ◽  
pp. 170454 ◽  
Author(s):  
Etienne Toffin ◽  
Edith Gabriel ◽  
Marceau Louis ◽  
Jean-Louis Deneubourg ◽  
Jean-Claude Grégoire

Bark beetles use aggregation pheromones to promote group foraging, thus increasing the chances of an individual to find a host and, when relevant, to overwhelm the defences of healthy trees. When a male beetle finds a suitable host, it releases pheromones that attract potential mates as well as other ‘spying’ males, which result in aggregations on the new host. To date, most studies have been concerned with the use of aggregation pheromones by bark beetles to overcome the defences of living, well-protected trees. How insects behave when facing undefended or poorly defended hosts remains largely unknown. The spatio-temporal pattern of resource colonization by the European eight-toothed spruce bark beetle, Ips typographus , was quantified when weakly defended hosts (fallen trees) were attacked. In many of the replicates, colonization began with the insects rapidly scattering over the available surface and then randomly filling the gaps until a regular distribution was established, which resulted in a constant decrease in nearest-neighbour distances to a minimum below which attacks were not initiated. The scattered distribution of the first attacks suggested that the trees were only weakly defended. A minimal theoretical distance of 2.5 cm to the earlier settlers (corresponding to a density of 3.13 attacks dm −2 ) was calculated, but the attack density always remained lower, between 0.4 and 1.2 holes dm −2 , according to our observations.

1980 ◽  
Vol 58 (3) ◽  
pp. 378-381 ◽  
Author(s):  
T. S. Sahota ◽  
S. H. Farris

Attack on the new host material by the adult bark beetles initiates reproductive processes and degeneration of flight muscles. Application of precocene II to adult female Dendroctonus rufipennis caused a temporary inhibition of flight muscle degeneration, as revealed by serial sections. This observation extends our knowledge of the effectiveness of precocene II to inhibiting an additional juvenile hormone-dependent process. The results also provide a confirmation of the role of juvenile hormone in the reproduction-associated degeneration of flight muscles.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1290
Author(s):  
Branislav Hroššo ◽  
Pavel Mezei ◽  
Mária Potterf ◽  
Andrej Majdák ◽  
Miroslav Blaženec ◽  
...  

Research Highlights: Bark beetles are important agents of disturbance regimes in temperate forests, and specifically in a connected wind-bark beetle disturbance system. Large-scale windthrows trigger population growth of the European spruce bark beetle (Ips typographus L.) from endemic to epidemic levels, thereby allowing the killing of Norway spruce trees over several consecutive years. Background and Objectives: There is a lack of evidence to differentiate how outbreaks are promoted by the effects of environmental variables versus beetle preferences of trees from endemic to outbreak. However, little is known about how individual downed-tree characteristics and local conditions such as tree orientation and solar radiation affect beetle colonization of downed trees. Materials and Methods: To answer this question, we investigated the infestation rates and determined tree death categories (uprooted, broken, and stump) in wind-damaged areas in Western Tatra Mts. in Carpathians (Slovakia) from 2014–2016, following a windthrow in May 2014. In total, we investigated 225 trees over eight transects. For every tree, we measured its morphological (tree height, crown characteristics), environmental (solar radiation, terrain conditions, trunk zenith), temporal (time since wind damage), and beetle infestation (presence, location of attack, bark desiccation) parameters. We applied Generalized Additive Mixed Models (GAMM) to unravel the main drivers of I. typographus infestations. Results: Over the first year, beetles preferred to attack broken trees and sun-exposed trunk sides over uprooted trees; the infestation on shaded sides started in the second year along with the infestation of uprooted trees with lower desiccation rates. We found that time since wind damage, stem length, and incident solar radiation increased the probability of beetle infestation, although both solar radiation and trunk zenith exhibited nonlinear variability. Our novel variable trunk zenith appeared to be an important predictor of bark beetle infestation probability. We conclude that trunk zenith as a simple measure defining the position of downed trees over the terrain can anticipate beetle infestation. Conclusions: Our findings contribute to understanding of the bark beetle’s preferences to colonize windthrown trees in the initial years after the primary wind damage. Further, our findings can help to identify trees that are most susceptible to beetle infestation and to prioritize management actions to control beetle population while maintaining biodiversity.


1990 ◽  
Vol 122 (3) ◽  
pp. 423-427 ◽  
Author(s):  
Thomas W. Phillips

AbstractResults of a field experiment indicate that adults of the pine weevil Hylobius pales (Herbst) respond to pheromones of bark beetles. Each sex of H. pales was more attracted to traps baited with the combination of a pine bolt infested with male Ips calligraphus Germar plus the synthetic Dendroctonus Erichson pheromones frontalin and exo-brevicomin, than to traps baited with pine bolts alone. The combined numbers of male and female H. pales caught in traps baited only with Ips calligraphus-infested bolts were significantly greater than numbers caught in traps baited with uninfested control bolts. The attraction of H. pales to bark beetle pheromones may represent a kairomonal response in which weevils exploit semiochemicals from other species that signify a suitable host resource.


2021 ◽  
Author(s):  
Erica Jaakkola ◽  
Anna Maria Jönsson ◽  
Per-Ola Olsson ◽  
Maj-Lena Linderson ◽  
Thomas Holst

<p>Tree killing by spruce bark beetles (<em>Ips typographus</em>) is one of the main disturbances to Norway spruce (<em>Picea abies</em>) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year<sup>[1]</sup>. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m<sup>3</sup> forest in 2020<sup>[2]</sup>. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden<sup>[2]</sup>. In 1990-2010, the spruce bark beetle killed on average 150 000 m<sup>3</sup> forest per year in southern Sweden<sup>[3]</sup>. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress<sup>[4]</sup>. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase<sup>[5]</sup>. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die<sup>[4,5]</sup>. Norway spruce trees normally defend themselves by drenching the beetles in resin<sup>[6]</sup>. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not<sup> [4,6]</sup>. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce<sup>[7,8]</sup>. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack</p><p>To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.</p><p>The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.</p><p><strong>References</strong></p><p>[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200<br>[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473<br>[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.<br>[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276<strong><br></strong>[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810. <br>[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.<br>[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8<br>[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88</p>


Author(s):  
Peter H. W. Biedermann ◽  
Jean-Claude Grégoire ◽  
Axel Gruppe ◽  
Jonas Hagge ◽  
Almuth Hammerbacher ◽  
...  

Tree-killing bark beetles are the most economically important insects in conifer forests worldwide. Yet  despite >200 years of research, the drivers of population eruptions or crashes are still not fully understood, precluding reliable predictions of the effects of global change on beetle population dynamics and impacts on ecosystems and humans.  We critically analyze potential biotic and abiotic drivers of population dynamics of the European spruce bark beetle (Ips typographus) and present a novel ecological framework that integrates the multiple drivers governing this bark beetle system. We call for large-scale collaborative research efforts to improve our understanding of the population dynamics of this important pest; an approach that might serve as a blueprint for other eruptive forest insects.


2016 ◽  
pp. 59-68
Author(s):  
Mara Tabaković-Tošić ◽  
Marija Milosavljević

The paper presents the results of the research on the correlation between changes in microclimate, the intensity of spruce decline and active abundance of its two economically most significant harmful insects-eight-toothed (Ips typographus) and six-toothed (Pityogenes chalcographus) spruce bark beetles (Coleoptera: Curculionidae) in Golija Nature Park whose pure and mixed conifer stands are dominated by spruce. The route method and ocular inspection were applied to study the presence and determine the intensity of spruce decline-both of individual trees and groups of trees in the management units of Dajićke planine, Kolješnica, Golija and Brusničke šume. Population dynamics of the two species of bark beetles and their active abundance were monitored by the method of trapping with barrier traps and the use of combined pheromone dispensers-PCIT Ecolure. Although the decline of individual conifer trees, primarily of spruce, had already been present in certain areas of these management units for several decades, it reached epidemic proportions due to extreme adverse climatic conditions in the period between 2011 and 2012 and culminated in 2015. A large number of physiologically weakened trees raised the population levels of secondary harmful insects and the number or the active abundance of the two investigated species of insects reached a peak in 2016. The inability to take appropriate and timely remedial measures in the areas under stricter protection regimes greatly contributed to this situation.


2010 ◽  
Vol 56 (No. 10) ◽  
pp. 474-484 ◽  
Author(s):  
E. Kula ◽  
W. Ząbecki

Research on merocoenoses of cambioxylophagous insect fauna of Norway spruce (Picea abies [L.] Karst.) was carried out in spruce stands of different age in the area with an endemic population (Moravian-Silesian Beskids, Czech Republic) and in the area with an epidemic population (Beskid Żywiecki, Poland) of the eight-toothed spruce bark beetle Ips typographus (L.). The structure of merocoenoses was characterized separately for standing trees attacked by bark beetles, trees struck by lightning, trees affected by fungal pathogens and wind-felling and trees in the form of snags and fragments. The occurrence of cambioxylophagous insects, mostly bark beetles (Coleoptera: Scolytidae), was compared between the study areas with emphasis on dominant facultative primary bark beetles and types of damage to spruce trees.  


1992 ◽  
Vol 124 (1) ◽  
pp. 1-5 ◽  
Author(s):  
W.W. Bowers ◽  
J.H. Borden

AbstractThe cylindrical bark beetle, Lasconotus intricatus Kraus., is attracted to multiple-funnel traps baited either with black spruce logs infested with male four-eyed spruce bark beetles, Polygraphus rufipennis (Kirby), or the male-produced aggregation pheromone, 3-methyl-3-buten-1-ol. The addition of the host terpenes, bornyl acetate and β-pinene, to 3-methyl-3-buten-1-ol reduced the attraction of L. intricatus. 3-Carene, myrcene, and α-pinene appeared to have a partial inhibitory effect. Catches in spring and summer disclosed a high degree of temporal coincidence between the two species. We hypothesize that L. intricatus utilizes the aggregation pheromone of P. rufipennis as a host-finding kairomone.


Sign in / Sign up

Export Citation Format

Share Document