scholarly journals A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor

2018 ◽  
Vol 5 (1) ◽  
pp. 171028 ◽  
Author(s):  
Haowen Li ◽  
Dongying Fu ◽  
Xian-Ming Zhang

In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H 2 BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H 2 BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm −2 compared to that of PC-900/CNTF electrode (22.8 mF cm −2 ) at 5 mV s −1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm −2 ) at the scan rate of 5 mV s −1 ; the volumetric energy density is 57.3 µWh cm −3 and the volumetric power density is 2.4 mW cm −3 at the current density of 0.5 mA cm −2 based on poly(vinyl alcohol)/H 3 PO 4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles.

Nanoscale ◽  
2018 ◽  
Vol 10 (33) ◽  
pp. 15454-15461 ◽  
Author(s):  
Simeng Dai ◽  
Yan Yuan ◽  
Jiangsheng Yu ◽  
Jian Tang ◽  
Jie Zhou ◽  
...  

MOFs are adopted for facile synthesizing hierarchical hollow architectures for energy storage.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35206-35213
Author(s):  
Abdelaziz M. Aboraia ◽  
Viktor V. Shapovalov ◽  
Alexnader A. Guda ◽  
Vera V. Butova ◽  
Alexander Soldatov

LiCoPO4 (LCP) is a promising high voltage cathode material but suffers from low conductivity and poor electrochemical properties.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 736
Author(s):  
Man Li ◽  
Tao Chen ◽  
Seunghyun Song ◽  
Yang Li ◽  
Joonho Bae

The challenge of safety problems in lithium batteries caused by conventional electrolytes at high temperatures is addressed in this study. A novel solid electrolyte (HKUST-1@IL-Li) was fabricated by immobilizing ionic liquid ([EMIM][TFSI]) in the nanopores of a HKUST-1 metal–organic framework. 3D angstrom-level ionic channels of the metal–organic framework (MOF) host were used to restrict electrolyte anions and acted as “highways” for fast Li+ transport. In addition, lower interfacial resistance between HKUST-1@IL-Li and electrodes was achieved by a wetted contact through open tunnels at the atomic scale. Excellent high thermal stability up to 300 °C and electrochemical properties are observed, including ionic conductivities and Li+ transference numbers of 0.68 × 10-4 S·cm-1 and 0.46, respectively, at 25 °C, and 6.85 × 10-4 S·cm-1 and 0.68, respectively, at 100 °C. A stable Li metal plating/stripping process was observed at 100 °C, suggesting an effectively suppressed growth of Li dendrites. The as-fabricated LiFePO4/HKUST-1@IL-Li/Li solid-state battery exhibits remarkable performance at high temperature with an initial discharge capacity of 144 mAh g-1 at 0.5 C and a high capacity retention of 92% after 100 cycles. Thus, the solid electrolyte in this study demonstrates promising applicability in lithium metal batteries with high performance under extreme thermal environmental conditions.


2017 ◽  
Vol 5 (35) ◽  
pp. 18823-18830 ◽  
Author(s):  
Seung-Keun Park ◽  
Jin Koo Kim ◽  
Yun Chan Kang

Multishell structured metal selenide nanocubes, namely, Co/(NiCo)Se2 box-in-box structures with different shell compositions, were successfully synthesized by applying zeolitic imidazolate framework-67 (ZIF-67) as a template.


2022 ◽  
Author(s):  
Xiang Han ◽  
Tiantian Wu ◽  
Lanhui Gu ◽  
Dian Tian

A three-dimensional (3D) metal-organic framework containing Li-oxygen clusters, namely {[Li2(IPA)]·DMF}n (1) (H2IPA = isophthalic acid), has been constructed under solvothermal conditions. The Li-based MOF can be applied to lithium energy...


Sign in / Sign up

Export Citation Format

Share Document