scholarly journals Lineage-independent retrotransposition of UTP14 associated with male fertility has occurred multiple times throughout mammalian evolution

2017 ◽  
Vol 4 (12) ◽  
pp. 171049 ◽  
Author(s):  
Jan Rohozinski

In mammals, gamete production is essential for reproductive success. This is particularly true for males where large quantities of sperm are produced to fertilize a limited number of eggs released by the female. Because of this, new genes associated with increased spermatogenic efficiency have been accumulating throughout the evolution of therian mammals. Many of these new genes are testis-specific retrotransposed copies of housekeeping genes located on the X chromosome. Of particular interest are retrotransposed copies of UTP14 that are present in many distantly related eutherian mammals. Analysis of genomic data available in ENSEMBL indicates that these UTP14 retrogenes have arisen independently in the various eutherian clades. They represent an interesting aspect of evolution whereby new homologues of UTP14 have become independently fixed in multiple mammalian lineages due to the reproductive advantage that may be conferred to males. Surprisingly, these genes may also be lost, even after being present within a lineage for millions of years. This phenomenon may potentially be used to delineate evolutionary trees in closely related groups of mammals, particularly in the case of South American primates. Studying these retrogenes will yield new insights into the evolutionary history of male gamete production and the phylogeny of eutherian mammals.

2013 ◽  
Vol 13 (4) ◽  
pp. 77-89 ◽  
Author(s):  
Aline Cristina Martins ◽  
Isabel Alves-dos-Santos

Floral oils as reward to pollinators occur in eleven plant families and appeared at least 28 times in the evolutionary history of flowering plants. They are produced in epithelial or tricomatic glands and collected by oil bee visitors. The present paper focuses on floral-oil-producing species of Plantaginaceae, a Neotropical group namely Angelonia clade. This group comprises around 40 described species in the genera Angelonia, Basistemon, Monttea, Monopera and the oil-less Melosperma. We present a revision of all species of the Angelonia clade, their geographical distribution, resources offered to pollinators and records of flower visitors, especially oil-collecting bees. These plants rely only on oil-collecting species in the tribe Centridini and Tapinotaspidini for a successful pollination, being the interaction between both partners an especial case of bee/flower adaptation in Neotropical region. Some bee species depend only on the oil of Plantaginaceae flowers to survive, while others can collect on several floral oil sources. The pollinating bees explore the oil glands located in sacs using specialized hairs in the forelegs. With this study, we hope to inspire further research relating to this fascinating group of plants, in which most species are rare and occur in highly endangered habitats in South American open vegetation biomes.


2016 ◽  
Vol 3 (2) ◽  
pp. 150635 ◽  
Author(s):  
Vanesa L. De Pietri ◽  
R. Paul Scofield ◽  
Nikita Zelenkov ◽  
Walter E. Boles ◽  
Trevor H. Worthy

Presbyornithids were the dominant birds in Palaeogene lacustrine assemblages, especially in the Northern Hemisphere, but are thought to have disappeared worldwide by the mid-Eocene. Now classified within Anseriformes (screamers, ducks, swans and geese), their relationships have long been obscured by their strange wader-like skeletal morphology. Reassessment of the late Oligocene South Australian material attributed to Wilaru tedfordi , long considered to be of a stone-curlew (Burhinidae, Charadriiformes), reveals that this taxon represents the first record of a presbyornithid in Australia. We also describe the larger Wilaru prideauxi sp. nov. from the early Miocene of South Australia, showing that presbyornithids survived in Australia at least until ca 22 Ma. Unlike on other continents, where presbyornithids were replaced by aquatic crown-group anatids (ducks, swans and geese), species of Wilaru lived alongside these waterfowl in Australia. The morphology of the tarsometatarsus of these species indicates that, contrary to other presbyornithids, they were predominantly terrestrial birds, which probably contributed to their long-term survival in Australia. The morphological similarity between species of Wilaru and the Eocene South American presbyornithid Telmabates antiquus supports our hypothesis of a Gondwanan radiation during the evolutionary history of the Presbyornithidae. Teviornis gobiensis from the Late Cretaceous of Mongolia is here also reassessed and confirmed as a presbyornithid. These findings underscore the temporal continuance of Australia’s vertebrates and provide a new context in which the phylogeny and evolutionary history of presbyornithids can be examined.


2009 ◽  
Vol 75 (16) ◽  
pp. 5410-5416 ◽  
Author(s):  
Gabriele Margos ◽  
Stephanie A. Vollmer ◽  
Muriel Cornet ◽  
Martine Garnier ◽  
Volker Fingerle ◽  
...  

ABSTRACT Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.


2014 ◽  
Vol 62 (4) ◽  
pp. 335 ◽  
Author(s):  
Rafael R. Pimentel ◽  
Natália P. Barreira ◽  
Diego P. Spala ◽  
Nathane B. Cardim ◽  
Marcelo C. Souza ◽  
...  

Characters of the gynoecium are considered potentially significant for the systematics of Myrtaceae. However, only two such characters – ovule number and placentation – have been addressed from an evolutionary perspective. Colleter presence in flowers is a synapomorphy of Myrtales; however, no morphological and histochemical descriptions of such structures have been done in Myrtaceae. Here we analysed the ontogeny and anatomy of the gynoecium combined with the ontogeny, anatomy, ultrastructure, and histochemistry of the colleters to study the evolution of these characters and map their states in the Myrteae phylogenetic tree. Our findings may help elucidate the evolutionary history of this tribe of fleshy-fruit producers so important towards maintaining ecological balance in the rainforest. Floral anatomy and ontogeny were analysed using light microscopy. Colleter samples were processed using standard methods for light and transmission electron microscopy. The main metabolites in colleters were detected via histochemistry. To map character states the program Mesquite version 2.71 was used. The morphological characters of the South American Myrteae here analysed provided an overview of the evolution of gynoecium – with cauline or carpellate placenta – and of colleters, as well as synapomorphies for the clades Plinia + Myrcia and Eugenia + Pimenta. The presence of two integuments in the ovules associated with sclereids and colleters in the gynoecium and the young fleshy fruit assures the efficient dispersal of their seeds. Our findings regarding gynoecium structural diversity of the tribe Myrteae give a new insight on their morphologically uniform flowers.


2012 ◽  
Vol 37 (1) ◽  
pp. 218-225 ◽  
Author(s):  
Guillermo C. Amico ◽  
Romina Vidal-Russell ◽  
Miguel A. Garcia ◽  
Daniel L. Nickrent

2021 ◽  
Author(s):  
Haifeng Zhang ◽  
Renjie Shang ◽  
Kwantae Kim ◽  
Wei Zheng ◽  
Christopher J. Johnson ◽  
...  

The size of an animal is determined by the size of its musculoskeletal system. Myoblast fusion is an innovative mechanism that allows for multinucleated muscle fibers to compound the size and strength of individual mononucleated cells. However, the evolutionary history of the control mechanism underlying this important process is currently unknown. The phylum Chordata hosts closely related groups that span distinct myoblast fusion states: no fusion in cephalochordates, restricted fusion and multinucleation in tunicates, and extensive, obligatory fusion in vertebrates. To elucidate how these differences may have evolved, we studied the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed an unexpectedly complex evolutionary history of myoblast fusion in chordates. A pre-vertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Thus, our findings reveal the evolutionary origins of chordate-specific fusogens and illustrate how new genes can shape the emergence of novel morphogenetic traits and mechanisms.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0169191 ◽  
Author(s):  
Roberto E. Vogler ◽  
Ariel A. Beltramino ◽  
Ellen E. Strong ◽  
Alejandra Rumi ◽  
Juana G. Peso

2007 ◽  
Vol 189 (21) ◽  
pp. 7932-7936 ◽  
Author(s):  
Tomoo Sawabe ◽  
Kumiko Kita-Tsukamoto ◽  
Fabiano L. Thompson

ABSTRACT We performed the first broad study aiming at the reconstruction of the evolutionary history of vibrios by means of multilocus sequence analysis of nine genes. Overall, 14 distinct clades were recognized using the SplitsTree decomposition method. Some of these clades may correspond to families, e.g., the clades Salinivibrio and Photobacteria, while other clades, e.g., Splendidus and Harveyi, correspond to genera. The common ancestor of all vibrios was estimated to have been present 600 million years ago. We can define species of vibrios as groups of strains that share >95% gene sequence similarity and >99.4% amino acid identity based on the eight protein-coding housekeeping genes. The gene sequence data were used to refine the standard online electronic taxonomic scheme for vibrios (http://www.taxvibrio.lncc.br ).


Sign in / Sign up

Export Citation Format

Share Document