scholarly journals The dynamics of trait variance in multi-species communities

2020 ◽  
Vol 7 (8) ◽  
pp. 200321
Author(s):  
Jan Martin Nordbotten ◽  
Folmer Bokma ◽  
Jo Skeie Hermansen ◽  
Nils Chr. Stenseth

In this paper, we establish the explicit connection between deterministic trait-based population-level models (in the form of partial differential equations) and species-level models (in the form of ordinary differential equations), in the context of eco-evolutionary systems. In particular, by starting from a population-level model of density distributions in trait space, we derive what amounts to an extension of the typical models at the species level known from adaptive dynamics literature, to account not only for abundance and mean trait values, but also explicitly for trait variances. Thus, we arrive at an explicitly polymorphic model at the species level. The derivations make precise the relationship between the parameters in the two classes of models and allow us to distinguish between notions of fitness on the population and species levels. Through a formal stability analysis, we see that exponential growth of an eigenvalue in the trait covariance matrix corresponds to a breakdown of the underlying assumptions of the species-level model. In biological terms, this may be interpreted as a speciation event: that is, we obtain an explicit notion of the blow-up of the variance of (possibly a linear combination of) traits as a precursor to speciation. Moreover, since evolutionary volatility of the mean trait value is proportional to trait variance, this provides a notion that species at the cusp of speciation are also the most adaptive. We illustrate these concepts and considerations using a numerical simulation.

Biosystems ◽  
2017 ◽  
Vol 161 ◽  
pp. 3-14 ◽  
Author(s):  
Roman Borisyuk ◽  
Robert Merrison-Hort ◽  
Steve R. Soffe ◽  
Stella Koutsikou ◽  
Wen-Chang Li

2000 ◽  
Vol 416 ◽  
pp. 29-43
Author(s):  
RENÉ PINET ◽  
E. G. PAVÍA

The stability of one-layer vortices with inhomogeneous horizontal density distributions is examined both analytically and numerically. Attention is focused on elliptical vortices for which the formal stability theorem proved by Ochoa, Sheinbaum & Pavía (1988) does not apply. Our method closely follows that of Ripa (1987) developed for the homogeneous case; and indeed they yield the same results when inhomogenities vanish. It is shown that a criterion from the formal analysis – the necessity of a radial increase in density for instability – does not extend to elliptical vortices. In addition, a detailed examination of the evolution of the inhomogeneous density fields, provided by numerical simulations, shows that homogenization, axisymmetrization and loss of mass to the surroundings are the main effects of instability.


2013 ◽  
Vol 82 (4) ◽  
pp. 283-288 ◽  
Author(s):  
Xian-kuan Li ◽  
Bing Wang ◽  
Rong-chun Han ◽  
Yan-chao Zheng ◽  
Hai-bo Yin Yin ◽  
...  

To test whether the internal transcribed spacer 2 (ITS2) region is an effective marker for using in authenticating of the <em>Schisandra chinensis</em> at the species and population levels, separately. And the results showed that the wild populations had higher percentage of individuals that had substitution of C→A at site 86-bp than the cultivated populations. At sites 10-bp, 37-bp, 42-bp and 235-bp, these bases of the <em>Schisandra sphenanthera</em> samples differed from that of <em>S. chinensis</em>. Two species showed higher levels of inter-specific divergence than intra-specific divergence within ITS2 sequences. However, 24 populations did not demonstrate much difference as inter-specific and intra-specific divergences were concerned. Both <em>S. chinensis</em> and <em>S. sphenanthera</em> showed monophyly at species level, yet the samples of different populations shown polyphyly at population level. ITS2 performed well when using BLAST1 method. ITS2 obtained 100% identification success rates at the species level for <em>S. chinensis</em>, with no ambiguous identification at the genus level for ITS2 alone. The ITS2 region could be used to identify <em>S. chinensis</em> and <em>S. sphenanthera</em> in the “Chinese Pharmacopoeia”. And it could also correctly distinguish 100% of species and 100% of genera from the 193 sequences of <em>S. chinensis</em>. Hence, the ITS2 is a powerful and efficient tool for species identification of <em>S. chinensis</em>.


Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


Sign in / Sign up

Export Citation Format

Share Document