scholarly journals Identification of medicinal plant Schisandra chinensis using a potential DNA barcode ITS2

2013 ◽  
Vol 82 (4) ◽  
pp. 283-288 ◽  
Author(s):  
Xian-kuan Li ◽  
Bing Wang ◽  
Rong-chun Han ◽  
Yan-chao Zheng ◽  
Hai-bo Yin Yin ◽  
...  

To test whether the internal transcribed spacer 2 (ITS2) region is an effective marker for using in authenticating of the <em>Schisandra chinensis</em> at the species and population levels, separately. And the results showed that the wild populations had higher percentage of individuals that had substitution of C→A at site 86-bp than the cultivated populations. At sites 10-bp, 37-bp, 42-bp and 235-bp, these bases of the <em>Schisandra sphenanthera</em> samples differed from that of <em>S. chinensis</em>. Two species showed higher levels of inter-specific divergence than intra-specific divergence within ITS2 sequences. However, 24 populations did not demonstrate much difference as inter-specific and intra-specific divergences were concerned. Both <em>S. chinensis</em> and <em>S. sphenanthera</em> showed monophyly at species level, yet the samples of different populations shown polyphyly at population level. ITS2 performed well when using BLAST1 method. ITS2 obtained 100% identification success rates at the species level for <em>S. chinensis</em>, with no ambiguous identification at the genus level for ITS2 alone. The ITS2 region could be used to identify <em>S. chinensis</em> and <em>S. sphenanthera</em> in the “Chinese Pharmacopoeia”. And it could also correctly distinguish 100% of species and 100% of genera from the 193 sequences of <em>S. chinensis</em>. Hence, the ITS2 is a powerful and efficient tool for species identification of <em>S. chinensis</em>.

2019 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
T Ljubka ◽  
O Tsarenko ◽  
I Tymchenko

The investigation of macro- and micromorphological peculiarities of seeds of four species of genus Epipactis (Orchidaceae) of Ukrainian flora were carried out. The genus Epipactis is difficult in the in in taxonomic terms and for its representatives are characterized by polymorphism of morphological features of vegetative and generative organs of plants and ability of species to hybridize. The aim of the research was to perform a comparative morphological study of seeds of E. helleborine, E. albensis, E. palustris, E. purpurata and to determine carpological features that could more accurately identify species at the stage of fruiting. A high degree of variation in the shape of the seeds in different populations within the species and overlap of most quantitative carpological characteristics of studied species are noted. There were no significant differences in micromorphological features of the structure of the testa at species or population level. The reticulate surface of the testa is characteristic of all species, the cells of testa are mostly elongated, penta-hexagonal, individual cells almost isodiametric-pentagonal. From the micropillary to the chalasal end, a noticeable change in the shape and size of the seed coat cells is not observed. There are no intercellular spaces, the anticlinal walls of adjacent cells are intergrown and the boundaries between them become invisible. The outer periclinal walls have a single, mainly longitudinal thin ribbed thickenings. Anticlinal cell walls are thick, dense, smooth. The longitudinal Anticlinal walls are almost straight, transverse - straight or sometimes curved in some cells. Epicuticular deposits on the periclinal walls are absent. It is concluded that the use of macro and micromorphological characteristics of seeds of these species for clearer diagnosis at the stage of fruiting is low informative.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Monier M. Abd El-Ghani ◽  
Ashraf S. A. El-Sayed ◽  
Ahmed Moubarak ◽  
Rabab Rashad ◽  
Hala Nosier ◽  
...  

Astragalus L. is one of the largest angiosperm complex genera that belongs to the family Fabaceae, subfamily Papilionoideae or Faboideae under the subtribe Astragalinae of the tribe Galegeae. The current study includes the whole plant morphology, DNA barcode (ITS2), and molecular marker (SCoT). Ten taxa representing four species of Astragalus were collected from different localities in Egypt during the period from February 2018 to May 2019. Morphologically, identification and classification of collected Astragalus plants occurred by utilizing the light microscope, regarding the taxonomic revisions of the reference collected Astragalus specimens in other Egyptian Herbaria. For molecular validation, ten SCoT primers were used in this study, producing a unique banding pattern to differentiate between ten samples of Astragalus taxa which generated 212 DNA fragments with an average of 12.2 bands per 10 Astragalus samples, with 8 to 37 fragments per primer. The 212 fragments amplified were distributed as 2 monomorphic bands, 27 polymorphic without unique bands, 183 unique bands (210 Polymorphic with unique bands), and ITS2 gene sequence was showed as the optimal barcode for identifying Astragalus L. using BLAST searched on NCBI database, and afterward, analyzing the chromatogram for ITS region, 10 samples have been identified as two samples representing A. hauarensis, four samples representing A. sieberi, three samples representing A. spinosus and one sample representing A. vogelii. Based on the ITS barcode, A. hauarensis RMG1, A. hauarensis RMG2, A. sieberi RMG1, A. sieberi RMG2, A. sieberi RMG3, A. sieberi RMG4, A. spinosus RMG1, A. spinosus RMG2, A. spinosus RMG3, A. vogelii RMG were deposited into GenBank with accession # MT367587.1, MT367591.1, MT367593.1, MT367585.1, MT367586.1, MT367588.1, MT160347.1, MT367590.1, MT367589.1, MT367592.1, respectively. These results indicated the efficiency of SCoT markers and ITS2 region in identifying and determining genetic relationships between Astragalus species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chayapol Tungphatthong ◽  
Santhosh Kumar J. Urumarudappa ◽  
Supita Awachai ◽  
Thongchai Sooksawate ◽  
Suchada Sukrong

AbstractMitragyna speciosa (Korth.) Havil. [MS], or “kratom” in Thai, is the only narcotic species among the four species of Mitragyna in Thailand, which also include Mitragyna diversifolia (Wall. ex G. Don) Havil. [MD], Mitragyna hirsuta Havil. [MH], and Mitragyna rotundifolia (Roxb.) O. Kuntze [MR]. M. speciosa is a tropical tree belonging to the Rubiaceae family and has been prohibited by law in Thailand. However, it has been extensively covered in national and international news, as its abuse has become more popular. M. speciosa is a narcotic plant and has been used as an opium substitute and traditionally used for the treatment of chronic pain and various illnesses. Due to morphological disparities in the genus, the identification of plants in various forms, including fresh leaves, dried leaf powder, and finished products, is difficult. In this study, DNA barcoding combined with high-resolution melting (Bar-HRM) analysis was performed to differentiate M. speciosa from allied Mitragyna and to assess the capability of Bar-HRM assays to identify M. speciosa in suspected kratom or M. speciosa-containing samples. Bar-HRM analysis of PCR amplicons was based on the ITS2, rbcL, trnH-psbA, and matK DNA barcode regions. The melting profiles of ITS2 amplicons were clearly distinct, which enabled the authentication and differentiation of Mitragyna species from allied species. This study reveals that DNA barcoding coupled with HRM is an efficient tool with which to identify M. speciosa and M. speciosa-containing samples and ensure the safety and quality of traditional Thai herbal medicines.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 281
Author(s):  
Nicolas Hubert ◽  
Elodie Pepey ◽  
Jean-Michel Mortillaro ◽  
Dirk Steinke ◽  
Diana Edithe Andria-Mananjara ◽  
...  

The fast development of aquaculture over the past decades has made it the main source of fish protein and led to its integration into the global food system. Mostly originating from inland production systems, aquaculture has emerged as strategy to decrease malnutrition in low-income countries. The Nile tilapia (Oreochromis niloticus) was introduced to Madagascar in the 1950s, and is now produced nationally at various scales. Aquaculture mostly relies on fry harvested from wild populations and grow-out in ponds for decades. It has recently been diversified by the introduction of several fast-growing strains. Little is known how local genetic diversity compares to recently introduced strains, although high and comparable levels of genetic diversity have previously been observed for both wild populations and local stocks. Our study compares DNA barcode genetic diversity among eight farms and several strains belonging to three species sampled. DNA-based lineage delimitation methods were applied and resulted in the detection of six well differentiated and highly divergent lineages. A comparison of DNA barcode records to sequences on the Barcode of Life Data System (BOLD) helped to trace the origin of several of them. Both haplotype and nucleotide diversity indices highlight high levels of mitochondrial genetic diversity, with several local strains displaying higher diversity than recently introduced strains. This allows for multiple options to maintain high levels of genetic diversity in broodstock and provides more options for selective breeding programs.


2013 ◽  
Vol 59 (4) ◽  
pp. 485-505 ◽  
Author(s):  
Jon E. Brommer

Abstract Individual-based studies allow quantification of phenotypic plasticity in behavioural, life-history and other labile traits. The study of phenotypic plasticity in the wild can shed new light on the ultimate objectives (1) whether plasticity itself can evolve or is constrained by its genetic architecture, and (2) whether plasticity is associated to other traits, including fitness (selection). I describe the main statistical approach for how repeated records of individuals and a description of the environment (E) allow quantification of variation in plasticity across individuals (IxE) and genotypes (GxE) in wild populations. Based on a literature review of life-history and behavioural studies on plasticity in the wild, I discuss the present state of the two objectives listed above. Few studies have quantified GxE of labile traits in wild populations, and it is likely that power to detect statistically significant GxE is lacking. Apart from the issue of whether it is heritable, plasticity tends to correlate with average trait expression (not fully supported by the few genetic estimates available) and may thus be evolutionary constrained in this way. Individual-specific estimates of plasticity tend to be related to other traits of the individual (including fitness), but these analyses may be anti-conservative because they predominantly concern stats-on-stats. Despite the increased interest in plasticity in wild populations, the putative lack of power to detect GxE in such populations hinders achieving general insights. I discuss possible steps to invigorate the field by moving away from simply testing for presence of GxE to analyses that ‘scale up’ to population level processes and by the development of new behavioural theory to identify quantitative genetic parameters which can be estimated.


1963 ◽  
Vol 4 (2) ◽  
pp. 193-220 ◽  
Author(s):  
R. J. Berry

It has been suggested (Berry & Searle, 1963) that the discontinuous (‘quasi-continuous’) variants studied by Grüneberg et al. in the skeleton of rodents can be regarded as constituting epigenetic polymorphism in different populations. Comparisons have been made between the incidences of skeletal variants in house mouse populations collected from: corn ricks on a single farm in Hampshire; eleven separated localities in different parts of the British Isles; and nine other places throughout the world. These showed that the method could profitably be used for genetically characterizing and hence comparing populations. There was evidence suggestive of genetical drift between local populations and stabilizing selection over a larger area.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Cobo

Abstract text The challenge of cryopreserve, store for prolonged period, and successfully implant the female gamete is nowadays feasible thanks to vitrification. The technology that was initially validated in oocyte recipients is currently applied to a vast population, including women at risk of losing their ovarian function due either to iatrogenic causes as occurs in cancer patients, or due to the natural depletion of the ovarian reserve as a result of age related fertility decline. That is the case of a growing population of women who wish to postpone childbearing and decide on oocyte vitrification as a means of fertility preservation (FP). At present, there is a growing body of evidence regarding the use of vitrified oocytes by many women under different indications, which makes it possible to evaluate the approach from different scenarios. So that vitrification can be evaluated in terms on survival rates, embryo development and the rate at which vitrified oocytes develop into live-born children in IVF cycles using vitrified oocytes which were initially stored due to different reasons. The effects of vitrification at the subcellular level and its impact on oocyte competence is of interest in the evaluation of the efficacy of the technology. Some studies have indicated that vitrification may affect ultrastructure, reactive oxygen species (ROS) generation, gene expression, and epigenetic status. However, it is still controversial whether oocyte vitrification could induce DNA damage in the oocytes and the resulting early embryos. Recent studies show that oocytes survival and clinical outcome after vitrification can be impaired by patients’ age and the clinical indication or the reason for vitrification. These studies show that age at oocyte retrieval strongly affects the survival and reproductive prognosis. In our experience, oocyte survival, pregnancy and cumulative live birth rates are significantly higher when patients are aged 35 years or younger versus patients older than 35 years at oocyte retrieval. Therefore, elective-FP patients should be encouraged to decide at young ages to significantly increase their chances of success. There is also evidence that the reason for vitrification is associated to the success rates. Poorer reproductive outcome was reported in cancer patients, low responders and endometriosis patients when compared to healthy women in age matching groups. Moreover, there are certain individualities linked to specific populations, as occurs when endometriosis patients had cystectomy earlier than the oocyte retrieval for FP. These women achieved lower success rates as compared to non-operated age matching counterparts. In this case, the lower cumulative live birth rates observed in operated women are, most probably, due to the smaller number of oocytes available, as a consequence of the detrimental effect of the surgery on the ovarian reserve. In this regard, several reports show that the number of oocytes available per patient is another variable closely related to the outcome in all populations using vitrified oocytes after FP. Thus, a significant improvement in the cumulative live birth rates can be achieved by adding a few oocytes, especially in healthy young patients. Different populations using vitrified oocytes under several indications achieve differential results in terms of pregnancy rates, when calculated in overall. Nonetheless, when the calculations for the cumulative probability of achieving a baby are made according the number of oocytes used per patient belonging to the same group of age, the results become comparable between different populations, as shown by the comparison between elective freezers versus endometriosis patients. Undoubtedly, vitrification can be recognized as one of the latest brakethrough in the ART field, but certainly the next step forward would be the successfull automatization of the vitrification and warming processes to achieve fully consistency among different laboratories.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 637 ◽  
Author(s):  
Mengyue Guo ◽  
Yanqin Xu ◽  
Li Ren ◽  
Shunzhi He ◽  
and Xiaohui Pang

Genus Epimedium consists of approximately 50 species in China, and more than half of them possess medicinal properties. The high similarity of species’ morphological characteristics complicates the identification accuracy, leading to potential risks in herbal efficacy and medical safety. In this study, we tested the applicability of four single loci, namely, rbcL, psbA-trnH, internal transcribed spacer (ITS), and ITS2, and their combinations as DNA barcodes to identify 37 Epimedium species on the basis of the analyses, including the success rates of PCR amplifications and sequencing, specific genetic divergence, distance-based method, and character-based method. Among them, character-based method showed the best applicability for identifying Epimedium species. As for the DNA barcodes, psbA-trnH showed the best performance among the four single loci with nine species being correctly differentiated. Moreover, psbA-trnH + ITS and psbA-trnH + ITS + rbcL exhibited the highest identification ability among all the multilocus combinations, and 17 species, of which 12 are medicinally used, could be efficiently discriminated. The DNA barcode data set developed in our study contributes valuable information to Chinese resources of Epimedium. It provides a new means for discrimination of the species within this medicinally important genus, thus guaranteeing correct and safe usage of Herba Epimedii.


2013 ◽  
Vol 65 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mirjana Ocokoljic ◽  
Dragica Vilotic ◽  
Mirjana Sijacic-Nikolic

The general population genetic characteristics of cultivated horse chestnut trees excelling in growth, phenotype characteristics, type of inflorescence, productivity and resistance to the leafminer Cameraria ohridella Deschka and Dimic were analyzed in Serbia. The analyzed population genetic parameters point to fundamental differences in the genetic structure among the cultivated populations in Serbia. The study shows the variability in all properties among the populations and inter-individual variability within the populations. The variability and differential characteristics were assessed using statistical parameters, taking into account the satisfactory reflection of the hereditary potential. The assessed differences in the vitality and evolution potential of different populations can determine the methods of horse chestnut gene pool collection, reconstruction and improvement.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zhigang Hu ◽  
Yuan Tu ◽  
Ye Xia ◽  
Peipei Cheng ◽  
Wei Sun ◽  
...  

Indirubin, one of the key components of medicinal plants includingIsatis tinctoria, Polygonum tinctorium, andStrobilanthes cusia, possesses great medicinal efficacy in the treatment of chronic myelocytic leukemia (CML). Due to misidentification and similar name, materials containing indirubin and their close relatives frequently fall prey to adulteration. In this study, we selected an internal transcribed spacer 2 (ITS2) for distinguishing these indirubin-containing species from five of their usual adulterants, after assessing identification efficiency ofmatK, rbcL, psbA-trnH, and ITS2 among these species. The results of genetic distances and neighbor-joining (NJ) phylogenetic tree indicated that ITS2 region is a powerful DNA barcode to accurately identify these indirubin-containing species and discriminate them from their adulterants. Additionally, high performance liquid chromatography (HPLC) was used to verify indirubin in different organs of the above species. The results showed that indirubin had been detected in the leaves ofIs. tinctoria, P. tinctorium, S. cusia, and Indigo Naturalis (made from their mixture), but not in their roots, or in the leaves of their adulterants. Therefore, this study provides a novel and rapid method to identify and verify indirubin-containing medicinal plants for effective natural treatment of CML.


Sign in / Sign up

Export Citation Format

Share Document