scholarly journals A biophysical approach to assess weather impacts on honey bee colony winter mortality

2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Benedikt Becsi ◽  
Herbert Formayer ◽  
Robert Brodschneider

The western honey bee ( Apis mellifera ) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.

Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 99 ◽  
Author(s):  
Hannes Oberreiter ◽  
Robert Brodschneider

We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a positive effect on colony survival and queen-related losses. Observed queen problems during the season increased the probability of losing colonies to unsolvable queen problems. A notable number of bees with crippled wings during the foraging season resulted in high losses and could serve as an alarm signal for beekeepers. Migratory beekeepers and large operations had lower loss rates than smaller ones. Additionally, we investigated the impact of several hive management practices. Most of them had no significant effect on winter mortality, but purchasing wax from outside the own operation was associated with higher loss rates. Colonies that reported foraging on maize and late catch crop fields or collecting melezitose exhibited higher loss rates. The most common Varroa destructor control methods were a combination of long-term formic acid treatment in summer and oxalic acid trickling in winter. Biotechnical methods in summer had a favourable effect on colony survival.


2020 ◽  
Vol 7 (4) ◽  
pp. 166 ◽  
Author(s):  
Peter Hristov ◽  
Rositsa Shumkova ◽  
Nadezhda Palova ◽  
Boyko Neov

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance. In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee colonies. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause. It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, various factors have been considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem. Thus, it is obvious that there are many factors affecting honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses. The present review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.


Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 5851
Author(s):  
Peter Hristov ◽  
Rositsa Shumkova ◽  
Nadezhda Palova ◽  
Boyko Neov

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance.In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee families. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause.It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, a number of different factors are considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem.Thus, it is obvious that many factors are involved in honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses.This review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.


2019 ◽  
Author(s):  
Miguel Corona ◽  
Belen Branchiccela ◽  
Shayne Madella ◽  
Yanping Chen ◽  
Jay Evans

AbstractNutritional stress, and especially a dearth of pollen, is considered an important factor associated with honey bee colony losses. We used pollen-restricted colonies as a model to study the nutritional stress conditions experienced in colonies within intensively cultivated agricultural areas. This model was complemented by the establishment of an experimental design, which allowed us to uncouple the effect of nutrition, behavior and age in colonies of similar size and demography. We used this system to determine the effect of pollen restriction on workers’ behavioral development. Then, we analyzed the effect of nutritional stress, behavior and age on the expression of key physiological genes involved in the regulation of division of labor. Finally, we analyzed the effects of these variables on the expression of immune genes and the titers of honey bee viruses. Our results show that pollen restriction led to an increased number of precocious foragers and this behavioral transition was associated with important changes in the expression of nutritionally regulated physiological genes, immunity and viral titers.Vitellogenin (vg)andmajor royal jelly protein1 (mrjp1)were the most predictive markers of nutrition and behavior. The expression of immune genes was primarily affected by behavior, with higher levels in foragers. Deformed wing virus (DWV) titers were significantly affected by behavior and nutritional status, with higher titer in foragers and increased levels associated with pollen ingestion. Correlation analyses support the predominant effect of behavior on immunity and susceptibility to viral infection, revealing that both immune genes and DWV exhibited strong negative correlations with genes associated with nursing, but positive correlations with genes associated with foraging. Our results provide valuable insights into the physiological mechanisms by which nutritional stress induce precocious foraging and increased susceptibility to viral infections.


Bee World ◽  
2019 ◽  
Vol 96 (2) ◽  
pp. 50-54 ◽  
Author(s):  
Mariia M. Fedoriak ◽  
Per K. Angelstam ◽  
Oleksandr M. Kulmanov ◽  
Lesia I. Tymochko ◽  
Svitlana S. Rudenko ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 492 ◽  
Author(s):  
Sonia E. Eynard ◽  
Christina Sann ◽  
Benjamin Basso ◽  
Anne-Laure Guirao ◽  
Yves Le Conte ◽  
...  

In the current context of worldwide honey bee colony losses, among which the varroa mite plays a major role, the hope to improve honey bee health lies in part in the breeding of varroa resistant colonies. To do so, methods used to evaluate varroa resistance need better understanding. Repeatability and correlations between traits such as mite non-reproduction (MNR), varroa sensitive hygiene (VSH), and hygienic behavior are poorly known, due to practical limitations and to their underlying complexity. We investigate (i) the variability, (ii) the repeatability of the MNR score, and (iii) its correlation with other resistance traits. To reduce the inherent variability of MNR scores, we propose to apply an empirical Bayes correction. In the short-term (ten days), MNR had a modest repeatability of 0.4, whereas in the long-term (a month), it had a low repeatability of 0.2, similar to other resistance traits. Within our dataset, there was no correlation between MNR and VSH. Although MNR is amongst the most popular varroa resistance estimates in field studies, its underlying complex mechanism is not fully understood. Its lack of correlation with better described resistance traits and low repeatability suggest that MNR needs to be interpreted cautiously, especially when used for selection.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 239 ◽  
Author(s):  
Alexis Beaurepaire ◽  
Niels Piot ◽  
Vincent Doublet ◽  
Karina Antunez ◽  
Ewan Campbell ◽  
...  

In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.


2014 ◽  
Vol 53 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Christian W W Pirk ◽  
Hannelie Human ◽  
Robin M Crewe ◽  
Dennis vanEngelsdorp

2015 ◽  
Vol 532 ◽  
pp. 1-13 ◽  
Author(s):  
Antoine Clermont ◽  
Michael Eickermann ◽  
François Kraus ◽  
Lucien Hoffmann ◽  
Marco Beyer

Sign in / Sign up

Export Citation Format

Share Document