scholarly journals Non-biodegradable objects may boost microbial growth in water bodies by harnessing bubbles

2021 ◽  
Vol 8 (9) ◽  
pp. 210646
Author(s):  
Atul Srivastava ◽  
Kenji Kikuchi ◽  
Takuji Ishikawa

Given the ubiquity of bubbles and non-biodegradable wastes in aqueous environments, their transport through bubbles should be widely extant in water bodies. In this study, we investigate the effect of bubble-induced waste transport on microbial growth by using yeasts as model microbes and a silicone rubber object as model waste. Noteworthily, this object repeatedly rises and sinks in fluid through fluctuations in bubble-acquired buoyant forces produced by cyclic nucleation, growth and release of bubbles from object's surface. The rise–sink movement of the object gives rise to a strong bulk mixing and an enhanced resuspension of cells from the floor. Such spatially dynamic contaminant inside a nutrient-rich medium also leads to an increment in the total microbe concentration in the fluid. The enhanced concentration is caused by strong nutrient mixing generated by the object's movement which increases the nutrient supply to growing microbes and thereby, prolonging their growth phases. We confirm these findings through a theoretical model for cell concentration and nutrient distribution in fluid medium. The model is based on the continuum hypothesis and it uses the general conservation law which takes an advection–diffusion growth form. We conclude the study with the demonstration of bubble-induced digging of objects from model sand.

Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


1999 ◽  
Vol 64 (2) ◽  
pp. 436-442 ◽  
Author(s):  
Péter Komjáth

One of the early partition relation theorems which include ordinals was the observation of Erdös and Rado [7] that if κ = cf(κ) > ω then the Dushnik–Miller theorem can be sharpened to κ→(κ, ω + 1)2. The question on the possible further extension of this result was answered by Hajnal who in [8] proved that the continuum hypothesis implies ω1 ↛ (ω1, ω + 2)2. He actually proved the stronger result ω1 ↛ (ω: 2))2. The consistency of the relation κ↛(κ, (ω: 2))2 was later extensively studied. Baumgartner [1] proved it for every κ which is the successor of a regular cardinal. Laver [9] showed that if κ is Mahlo there is a forcing notion which adds a witness for κ↛ (κ, (ω: 2))2 and preserves Mahloness, ω-Mahloness of κ, etc. We notice in connection with these results that λ→(λ, (ω: 2))2 holds if λ is singular, in fact λ→(λ, (μ: n))2 for n < ω, μ < λ (Theorem 4).In [11] Todorčević proved that if cf(λ) > ω then a ccc forcing can add a counter-example to λ→(λ, ω + 2)2. We give an alternative proof of this (Theorem 5) and extend it to larger cardinals: if GCH holds, cf (λ) > κ = cf (κ) then < κ-closed, κ+-c.c. forcing adds a counter-example to λ→(λ, κ + 2)2 (Theorem 6).Erdös and Hajnal remarked in their problem paper [5] that Galvin had proved ω2→(ω1, ω + 2)2 and he had also asked if ω2→(ω1, ω + 3)2 is true. We show in Theorem 1 that the negative relation is consistent.


Sign in / Sign up

Export Citation Format

Share Document