The CH 2 : CH.CH 2 —CH 3 bond dissociation energy and the heat of formation of the allyl radical

The pyrolysis of butene-1 was investigated by a flow technique, toluene being used as a carrier gas. It was found that butene-1 decomposed into allyl and methyl radicals according to the equation CH 2 : CH.CH 2 — CH 3 → CH 2 : CH.CH 2 + CH 3 . Methyl radicals were removed by reaction with toluene giving methane and benzyl radicals. The rate of the initial decomposition was measured by the rate of formation of methane. The decomposition was found to be a homogeneous first order gas reaction. The activation energy was calculated at 61.5 kcal./mole and it was identified with the CH 2 : CH.CH 2 — CH 3 bond dissociation energy. Taking D (CH 2 : CH.CH 2 —CH 3 ) at 61.5 kcal./mole we calculated from thermochemical data D (CH 2 : CH.CH 2 —H) at 76.5 kcal./mole and the heat of formation of allyl radical at + 30 kcal./mole. The fate of allyl radicals is discussed and the thermal stability of these is compared with that of benzyl radicals.

1968 ◽  
Vol 46 (10) ◽  
pp. 1633-1634 ◽  
Author(s):  
W. D. Clark ◽  
S. J. W. Price

The enthalpy of reaction of In(CH3)3,c with a chloroform solution of bromine is −162.5 kcal mole−1. With this value ΔHf0298[In(CH3)3,c] = 29.5 kcal mole−1 and ΔHf0298[In(CH3)3,g] = 41.1 kcal mole−1. Combining the latter with ΔHf0298[CH3,g] = 33.2 kcal mole−1 and ΔHf0298[In,g] = 58.2 kcal mole−1 then gives E(In—CH3) = 38.9 kcal mole−1. From previous kinetic studies D[(CH3)2In—CH3] + D[In—CH3] = 87.9 kcal mole−1. Hence D[CH3In—CH3] = 28.8 kcal mole−1.


The pyrolyses of methyl bromide and of the halogenated bromomethanes, CH 2 CI. Br, CH 2 Br 2 , CHCl 2 .Br, CHBr 3 , CF 3 Br, CCI 3 . Br and CBr 4 , have been investigated by the ‘toluene-carrier' technique. It has been shown that all these decompositions were initiated by the unimolecular process R Br → R + Br. (1) Since all these decompositions were carried out in the presence of an excess of toluene, the bromine atoms produced in process (1) were readily removed by the fast reaction C 6 H 5 .CH 3 + Br → C 6 H 5 . CH 2 • + HBr. Hence, the rate of the unimolecular process (1) has been measured by the rate of formation of HBr. The C—Br bond dissociation energies were assumed to be equal to the activation energies of the relevant unimolecular dissociation processes. These were calculated by using the expression k ═ 2 x 10 13 exp (- D/RT ). The reason for choosing this particular value of 2 x 10 13 sec. -1 for the frequency factor of these reactions is discussed. The values obtained for the C—Br bond dissociation energies in the investigated bromomethanes are: D (C—Br) D (C—Br) compound (kcal./mole) compound (kcal./mole) CH 3 Br (67.5) CHBr 3 55.5 CH 2 CIBr 61.0 CF 3 Br 64.5 CH 2 Br 2 62.5 CCI 3 Br 49.0 CHCl 2 Br 53.5 CBr 4 49.0 The possible factors responsible for the variation of the C—Br bond dissociation energy in these compounds have been pointed out.


1966 ◽  
Vol 44 (18) ◽  
pp. 2211-2217 ◽  
Author(s):  
J. B. Homer ◽  
F. P. Lossing

The thermal decomposition of biallyl has been investigated from 977 – 1 070 °K at helium carrier gas pressures of 10–50 Torr. Under these conditions the rate of central C—C bond fission to give two allyl radicals can be measured without interference from secondary reactions. The reaction at the pressures employed is first order with respect to biallyl, but between first and second order in the total pressure. The temperature dependence of the rate constants, extrapolated to infinite pressure, and corrected to 298 °K, gives an activation energy of 45.7 kcal/mole for the reaction, corresponding to ΔHf(allyl) = 33.0 kcal/mole.


Sign in / Sign up

Export Citation Format

Share Document